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IZVLEČEK V SLOVENSKEM JEZIKU

Model faznega polja kristala (PFC) lahko opiše material z atomistično resolucijo preko difizuijskih časov

s pomočjo polja atomske gostote. Razširitev modela z razvojem po amplitudah (APFC) spremeni model

v obliko, primerno za uporabo s tehnikami adaptivnega zgoščevanja računske mreže (AMR). Teza pred-

stavi izboljšave v modelu APFC, ki omogočijo učinkovito uporabo tehnik adaptivnega zgoščevanja mreže

računskih točk. Vpeljano je pomožno polje, ki opisuje lokalno rotacijo zrna in omogoči redčenje mreže

računskih točk v vseh zrnih, ne glede na njihovo orientacijo. Uporabljena je le kartezična oblika am-

plitudnih enačb. Vpeljan algoritem izračuna polje lokalne rotacije in izkoristi rotacijsko kovariantnost

dinamičnih enačb za evolucijo amplitudnih enačb, da doseže učinkovito uporabo računalniške moči.

Pomožno polje je uporabljeno, da v modelu APFC odstrani nefizikalno mejo med zrni, ki so rotirana za

simetrijsko rotacijo kristala. Nefizikalna meja je odstranjena s pomočjo pravilnega ujemanja kompleksnih

amplitud, ki opisujejo najbolj ujemajoče se gostotne valove. Izboljšava popravi energije mej med polovico

naključno rotiranimi zrni in omogoči APFC simulacije procesov, v katerih zrna rotirajo. Simulacije zrna, ki

rotira v matriki, narejene z modeloma PFC in APFC, dajo kvalitativno ujemajoče se rezultate, kar potrjuje

odstranitev nefizikalne meje med zrni tudi v pogojih, pri katerih zrna dinamično rotirajo. Skupaj izboljšave

omogočijo simulacije mikrostrukture z atomistično resolucijo modela APFC na adaptivni mreži računskih

točk, ki učinkovito razporeja računalniško moč tudi v simulacijah procesov, kjer zrna rotirajo.

Ključne besede: fazno polje kristala, amplitudni razvoj, rast zrn, modeliranje mikrostrukture

ABSTRACT

The Phase-Field Crystal model (PFC) is a model that is able to describe material on the atomic level

across diffusive time scales using a continuous atomic density field. Its amplitude expansion (APFC)

reformulates the model in a form suitable for the application of adaptive mesh refinement techniques.

This thesis presents improvements to the APFC model that lead to effective use of adaptive mesh refine-

ment techniques. An auxiliary field describing local grain rotation is introduced and used to enable the

adaptive mesh to coarsen in all grains, regardless of their orientation. Only a Cartesian representation

of the amplitude equations is employed. The introduced algorithm extracts the local grain rotation and

exploits the rotational covariance of the amplitude equations to achieve efficient use of computational re-

sources. The auxiliary local rotation field is used to remove an unphysical grain boundary present in the

APFC model between grains, which are rotated by the crystal’s symmetry rotation. The unphysical grain

boundary is removed by correctly matching the complex amplitudes describing the best aligned density

waves. This corrects the grain boundary energies in half of the grain boundaries formed between the

randomly rotated grains and enables APFC simulations of processes where grain rotation occurs. Sim-

ulations of a single rotating grain using the PFC and APFC models show qualitatively matching results,

confirming the effective removal of the unphysical grain boundary under conditions where grains rotate

dynamically. Together, the improvements enable microstructure simulations with the APFC model on an

adaptive computational mesh, which efficiently distributes computational resources even in simulations

of processes where grains rotate.

Key words: phase-field crystal, amplitude expansion, grain growth, microstructure modelling
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Chapter 1

Introduction

1.1 Definition of the research problem

Modern material science is based on the discovery that a material’s properties are largely

influenced by its microstructure, and do not only depend on its chemical composition.

The influence of the microstructure is especially evident in the mechanical properties

of the material because some aspects of it (i.e. average grain size) directly correlate

with many of the material’s properties. Microstructure can be described on multiple

different scales [1, 2]. On the lowest level the quantum mechanical phenomena are

most important. Moving up scales on the atomic level the microstructure is described

by atomic positions, lattices of the crystals, and defects in such lattices. Mezoscopic

scale describes the material on the level of the grains and defines how different phases

are distributed in the material. On the macroscopic scale all micro phenomena are

averaged out and the material is described as a continuum with specific physical prop-

erties (atomic density and lattice parameters) that change continuously with noticeable

changes only over larger lengths. The interconnection between different scales at which

we can study or understand the material becomes apparent when we wish to answer

a common question, such as “why did a certain mechanical part break (i.e. shaft of a

petrol engine)?”. While the failure mechanical part’s failure is observable on the macro-

scopic scale, the origin of the cracks leading to it is on the atomic scale. Therefore, to

truly understand many phenomena we must be able to connect conclusions on different

scales or even better, unify our understanding of the phenomena across different length

scales. As well as length scales, the time scales of different phenomena relevant for un-

1



Chapter 1. Introduction

derstanding the processes that determine the final physical properties of a material vary

greatly. Time scales of vibrations of the atomic lattice are connected with the speed

at which certain phase transformations spread in the material and the speed at which

mechanical deformations spread through the material. Experiments that would give us

insights into the microstructure’s evolution are sometimes difficult to conduct, expen-

sive or even impossible. It is hard to imagine successfully tracking the atomic positions

in the middle of a sample of an observable size experimentally, during a process where

the sample is deformed and heat treated to emulate an industrial production process.

As the interactions of different processes influencing the microstructure’s evolution are

complex, computer models with high predictive power that can emulate industrial pro-

cesses are ever more important in the design of modern materials. While useful, the

computer simulations have their limits mainly based on the computational power ob-

tainable today with reasonable resources. The “ab initio” methods that are not based on

experimentally obtained data and can be used to track quantum mechanical phenomena

are currently limited to very small spatial scales due to the computational power they

need. The difficulties of modelling the materials across a large span of temporal and

spatial scales can be partially overcome by using an ensemble of models instead of one

model alone. Such an approach is called Integrated Computational Materials Engineer-

ing (ICME) [3] and the key to its success lies in using the most appropriate model on

each of the scales in sequence, and then connecting the models together by exchanging

some parameters between the models. While highly valuable, this approach can also

lead to observations of unphysical phenomena in the models due to the discontinuous

transition between models at different scales. The success of the phase-field method

(PF) [4] in modelling phenomena that occur on largely different time and length scales

indicates that a model able to describe the material on many time and length scales in

a unified way is highly desirable. Combined with adaptive mesh refinement techniques,

the PF method can model the dendritic growth in samples of macroscopic sizes. The

applicability of AMR techniques allows the PF method to span many spatial scales. As

the PF method operates with a so-called phase field variable (order parameter) that

is a continuous function of space, it does not reach the space scales at which the ar-

rangement of atoms is described at the lower end of scales it can describe, because the

atomic arrangements are averaged out in and only the information about the material’s

phase is preserved in the model. This makes it unsuitable for modelling phenomena

operating on the level of atomic arrangements, such as interactions between grains,

growth and transformation of grains during thermo-mechanical processing and phase

2



1.1. Definition of the research problem

transformations due to micro conditions at the grain boundaries.

Figure 1.1: Methods used in material modelling at different scales. The PFC and
APFC methods bridge the scales between the ab initio methods on the smallest scales
and phenomenologically derived methods on the mesoscopic scales.

The method’s ability to describe many length scales in a unified way is considerably

more important in the field of metallurgy. New materials are designed by manipulating

processes occurring on atomistic scales while the produced metallic ingots are mea-

sured in tons. While the industrial processes manipulate the material in large samples,

the transformation they produce in the material itself can only be understood on the

atomistic level. A method able to preserve the atomistic resolution on length scales

approaching measurable samples would therefore be ideally suited for modelling met-

allurgically important phenomena. Figure 1.1 illustrates the modelling methods most

frequently used at different scales together with a description of the material associated

with each method.

The phase field crystal method (PFC) is similar in nature to the PF method by

3
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describing the material through field rather than modelling it using an ensemble of

atoms or molecules. Yet, unlike the PF method, the field in the PFC method describes

the local atomic density, thus rendering the method suitable for modelling phenomena,

where atomic arrangements are vital for understanding [5, 6]. Describing the material

using a field gives the PFC method the ability to span larger volume and time scales

than other methods that can describe the material on atomic level, such as the molec-

ular dynamics methods and classical density functional theory based models. These

properties make the PFC model the ideal model for describing the evolution of the ma-

terial’s microstructure across the time and volume scales needed to model interesting

phenomena based on the interaction between grain boundaries. As the atomic density

function on which the PFC model operates rapidly varies in space with peaks around

the expected atomic positions, it can not be used in combination with AMR techniques.

In order to enable the AMR techniques to be used together with the PFC model, the

so-called Amplitude Expansion of the PFC model was developed (APFC) by Goldenfeld

et al. [7, 8]. The extension is based on renormalization group theory and expresses the

atomic density function in terms of complex amplitudes which represent the amplitudes

of density waves, aligned with the corresponding base vectors. The introduced com-

plex amplitudes vary much slower in space, bringing the benefit of requiring a coarser

computational mesh. The amplitudes also do not resolve the quick variations in atomic

density, and are therefore more suitable for use with AMR techniques. While expressing

the atomic density function with a set of complex amplitudes, the grain’s rotation is

expressed through the so-called beats in the complex amplitudes, preventing efficient

use of AMR techniques in rotated grains. Athreya et al. [9] developed a novel approach

to express the complex amplitudes in terms of phase and amplitude, which are more

suitable for AMR techniques, and achieved mesh refinement in all grains. As the pro-

cess included converting the complex amplitude equations into separate equations for

phase and amplitude and splitting the simulation domain into two regions, one where

the phase and amplitude equations were evolved and the other where normal complex

amplitude equations were evolved, this approach was not widely used, and most APFC

models today still use a fixed grid. Conversion of the PFC model into the APFC for-

mulation also introduces a new error in the simulation, whereby an unphysical grain

boundary occurs between grains, rotated by a crystal’s symmetry rotation as reported

by Spatschek and Karma [10]. This problem is not easy to solve and limits use of APFC

models to cases where grain rotation does not occur and the set of grain rotations can be

feasibly limited to rotations below half the crystal’s symmetry rotation. As grain rota-
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tion frequently occurs during industrial processing of material (i.e. rolling, forging), this

prevents any wider applicability of the APFC models for studying the microstructure’s

transformation during industrial processing.

1.2 Scope, aim and outline of the thesis

Models able to study the evolution of microstructure on an atomic level on diffusive

timescales are rare. In this thesis, the APFC model was improved to enable mesh

refinement in a Cartesian representation of the complex amplitudes using an auxiliary

local rotation field variable. The idea of using an auxiliary field, that is not directly

used in the calculation in this context, constitutes a new contribution of this thesis.

The auxiliary local rotation field is derived from the complex amplitudes and, in step

one, used to enable the mesh refinement in the APFC model in all grains regardless

of their orientation using only the Cartesian representation of the complex amplitudes.

The algorithm we developed exploits the rotational covariance in the APFC equations

in a novel way to achieve this. In the second step, we eliminated the unphysical grain

boundary from the APFC model using the information we gained from the local rotation

field to correctly connect the complex amplitudes in the neighboring computational

nodes. The additional improvement in the algorithm needed to achieve this includes a

lookup table and an amplitude-matching algorithm. In the last step, we verified that

the new algorithm can be applied to model processes where grain rotation occurs by

modelling a simple example where a single circular grain is forced to rotate within a

solidified matrix. We compared the results with those obtained using the basic PFC

model and found good agreement in the observed phenomena.

The contributions of this thesis enable processes to be simulated where grain rota-

tion occurs on adaptive meshes. This increases the applicability of APFC models to

modelling industrially important processes in a way that facilitates the study of phe-

nomena that are fundamentally atomistic in nature (e.g. interaction between defects in

crystal lattices, interaction between grain boundaries).

The thesis is organized as follows. A theoretical description of the PFC, APFC and

related models is given in Chapters 2 and 3. Numerical methods frequently used with

the PFC and APFC models are described in Chapter 4. The next chapters focusing

on the contribution made by the thesis can be read as complete, standalone works.

Each thesis contribution in Chapters 5, 6 and 7 includes a short introduction, and an
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overview of the theory and methods. To be able to compare our results with existing

works, we used slightly different models in these sections, as the works with which we

compared our models also used slightly different PFC/APFC models. These models are

described in detail in the theoretical parts of these chapters, which cover the topics of

the thesis. Our approach to enabling adaptive mesh refinement in APFC models using

only the Cartesian representation of the complex amplitudes is described in Chapter 5.

The way to remove the effects of the unphysical grain boundary from the APFC model

is described in Chapter 6, and our final application of the model to an example process

where grain rotation is present is described in Chapter 7. Chapter 8 summarizes the

contribution brought by the thesis, discusses the limitations of our approach, and direc-

tions for future research. The last part of the thesis consists of an extended summary

in the Slovenian language.
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Chapter 2

Phase-Field Crystal Model

2.1 Introduction

Phase-field crystal model (PFC) is a pattern formation model that can be used for mod-

elling crystalline materials over diffusive timescales [5, 6]. It is based on minimization

of a free energy functional which is constructed in such way that the solution to the

problem is a periodic function of space. As such, it naturally incorporates many features

of crystalline systems, such as elasticity in crystalline phase, formation of topological

defects, energy of grain boundaries, grain growth, solid-liquid phase transformation and

solid state phase transformations. Figure 2.1 presents examples of PFC model simula-

tions.

The PFC model can be placed between classical density functional theory based

models (CDFT) on one side and phase-field (PF) models on the other side, and has been

connected to the CDFT under some necessary assumptions [11]. Like CDFT models

it operates on an atomic density function, but in contrast to the CDFT approach,

the atomic density function is smoothed and the sharp peaks in density that represent

the locations of the atoms in CDFT models are spread over larger area. This allows

for a coarser computational mesh, and allows the models to reach larger volumes and

diffusive times. At the cost of some loss of accuracy in the description of the material,

the PFC model can reach diffusive times in samples large enough to enable the study of

interactions of defects in crystal latices and grain boundaries. The connection to the PF

models comes through expanding the atomic density function in terms of plane waves

aligned with the set of basis vectors, weighted by the respective complex amplitudes in
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Figure 2.1: Examples of PFC simulations. The left image presents an excerpt of a
larger 2D PFC simulation of three grains growing in undercooled melt. Density of the
dislocations on the grain boundaries indicates the misalignment between the grains.
The right image presents a simulation of a growing grain in undercooled melt in 3D,
the colouring of the isosurfaces represents the z coordinate.

the complex amplitudes expansion of the PFC model (APFC).

In the initial formulation of the PFC model, only one crystalline phase was sta-

ble, even though it could demonstrate structural phase transformations and stabilize

a striped phase under different conditions [5]. The shape of the free energy functional

favoured structures where only one peak of the two-point correlation function was suf-

ficient. By adding additional modes in the two point correlation function, additional

phases can be stabilized [12, 13]. A completely new approach termed structural PFC

model (XPFC) [14, 15] was developed to enable more straightforward modelling of

systems with complex phase diagrams. The XPFC model constructs the two particle

correlation function from a sum of Gaussian peaks corresponding to more modes of the

underlying phase. Further improving the ability of the PFC model to capture complex

phase diagrams, the work of [16, 17] demonstrates the use of a three particle correlation

functions in order to stabilize complex phases in the context of PFC models. The initial

work of [5] introduced a simple binary alloy model, and the works of [18, 19] extended

the PFC model to ternary systems.

The PFC model was also extended to describe additional phenomena in combination

with the ability to evolve the microstructure of the material. The elastic phenomena
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were more correctly described in the work of [20]. Improvements in the work of [21] en-

able modelling of materials with spatial anisotropy and the work of [22, 23] extends the

PFC model to liquid crystals. Coupling to ferromagnetic and ferroelectric phenomena

was introduced in the works of [24] and [25]. For a more complete overview of the de-

velopment and applications of the PFC model the reader is referred to a comprehensive

overview of different PFC models in work of [26], book on phase field and phase field

crystal modelling [4] or more detailed explanations and derivations of specific models in

the theses of [27–31].

2.2 Landau theory of phase transitions

Landau’s theory of phase transitions is an analytical theory of phase transitions formu-

lated on the basis of a phenomenological free energy functional [32]. The free energy

functional is written as a Taylor series expansion of the free energy in terms of the or-

der parameter Ω, around a critical point at which the phase transition occurs. Its main

assumption is that for T → Tc the order parameter becomes arbitrarily small, where

Tc is the temperature of phase transition. Phase transitions can be classified based on

the discontinuities in the thermodynamic variables at the point of the phase transition

into two kinds. Second order phase transitions describe processes where the changes in

thermodynamic variables and their derivatives through the phase transition are contin-

uous, while in the first order phase transitions at least one derivative of thermodynamic

variables changes discontinuously at transition point. Consequently, the latent heat is

only present in phase transitions of the first order. In a first order phase transition

the two phases are in coexistence at transition point, while in a second order phase

transition the material changes phase continuously and at each point there is only one

phase. Examples of phase transitions of the first order are the changes in aggregate

state of material (solidification, melting, evaporation), while change in magnetisation

in a feromagnetic system when temperature drops below Curie temperature is second

order phase transition.

Phase-field models are based on a Landau free energy functional and the PFC

method also partially shares this form of the free energy functional.

The free energy of the system is expanded around the transition point in a power
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series of the order parameter Ω as

f(Ω, T ) = a0 + a1Ω+ a2Ω
2 + a3Ω

3 + a4Ω
4 + . . . (2.1)

where the coefficients are functions of temperature T . Depending on the properties of

the system it is possible that higher powers of the order parameters would be required,

while for a simple system the first four powers are sufficient. The symmetry of the

system also affects the possible values the coefficients aj might take. For a system in

which the free energy does not depend on the sign of the order parameter, the free energy

functional has to preserve this symmetry and all odd powers of the order parameter are

prohibited.

In a continuous or second order phase transition (i.e. magnetisation) the symmetry

prohibits odd powers of the order parameter. The leading term a0 determines the offset

of the free energy and can be set to zero if the free energy is measured from this value.

The first non-zero term a2 must change sign at the phase transition, and therefore in

its simplest form must depend on temperature T as a2 = T−Tc
Tc

ã2 where ã2 is a positive

constant. The fourth power coefficient a4 must be positive, otherwise the free energy

would be unbound from below (f → −∞ for Ω → ±∞). We find minima of the free

energy

f(Ω, T ) =
T − Tc
Tc

ã2Ω
2 + a4Ω

4 (2.2)

for Ω by derivation ∂f/∂Ω = 0 and obtain Ω = 0,±
√︂

−{(T−Tc)/Tc}ã2
2a4

. We find that

for T > Tc the system has only one minimum, the disordered state at Ω = 0, while at

temperatures below Tc, T < Tc two symmetric minima exist at Ω = ±
√︂

−{(T−Tc)/Tc}ã2
2a4

.

The free energy of this system is presented in Fig. 2.2.

In order to represent a first order phase transition within Landau theory, a cubic

term is added to the free energy functional

f(Ω, T ) = a2Ω
2 + a3Ω

3 + a4Ω
4 (2.3)

This form has minimums at Ω = 0,
−3a3±

√
9a23−32a2a4
8a4

. The non-zero minimums become

real for T < T ∗ =
9a23Tc

32a4ã2
+ Tc and the non-zero minimum becomes the global minimum

for T < T1. At T1 the optimal value for Ω changes discontinuously from Ω = 0 to a non-

zero value, marking a first order phase transition with non zero latent heat. Figure 2.2
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Figure 2.2: Free energies in Landau theory. In a continuous or second order phase
transition the value of order parameter Ω changes continuously when the temperature
transitions through the phase transition temperature Tc, moving from Ω = 0 to a non-
zero value. In a first order phase transition the value of the order parameter changes
discontinuously at a phase transition temperature T1, indicating a phase change with
non-zero latent heat.

shows the shape of the free energy functions for different values of T .

2.3 Phase-field crystal model of a pure material

The free energy of a pure material is given by

∆F = ∆Fid +∆Fex +∆Fext (2.4)

where ∆F is the total free energy of the system, ∆Fid is the ideal free energy of

the system arising from entropy considerations, ∆Fex is the free energy due to the

interactions between particles and ∆Fext is the free energy due to external factors, such

as external magnetic or electric fields acting on the system. Expressing the free energy

of the system in terms of the atomic density function we obtain

∆Fid/kBT =

∫︂
dr [ρ ln(ρ/ρ0)− δρ] (2.5)

where kB is Boltzmann’s constant, T is temperature, ρ = ρ(r), δρ = ρ−ρ0 and ρ0 is the

liquid density at coexistence [11, 33]. The excess free energy of the system according to

11



Chapter 2. Phase-Field Crystal Model

the CDFT theory is

∆Fex/kBT =

∫︂
dr

[︄
−

∞∑︂
n=2

1

n!

∫︂ n∏︂
i=1

driδρ(ri)Cn(r1, r2, . . . , rn)

]︄
(2.6)

where Cn are the n-particle direct correlation functions of an isotropic fluid [11]. The

external free energy contribution is

∆Fext =

∫︂
drM(r)

δF

δM
(2.7)

where M is the field acting on the material (i.e. magnetic, electric field) [4]. In this

thesis we do not model the influence of external fields, therefore this term is always set

to 0.

We introduce dimensionless density as ψ = (ρ − ρ0)/ρ0. To derive the PFC model

we expand the ideal free energy term up to ψ4

∆Fid/kBTρ0 =

∫︂
dr

[︃
∆B

2
ψ2 − t

3
ψ3 +

v

4
ψ4

]︃
(2.8)

where ∆B = 1, t = 1/2 and v = 1/3 are the parameters obtained through derivation

from CDFT, but can be used as free parameters to fit the phase diagram of the material

we wish to model.

The excess free energy term that in CDFT theory describes higher order inter par-

ticle correlation functions is in PFC model truncated at two particles. Higher order

correlation functions are kept in some improvements to the PFC model, notably in

[16, 17]. We observe that the two particle correlation function depends only on the

distance between the particles C2(r, r
′) = C2(|r, r′|), and we can then evaluate the con-

volution in Fourier space. The Fourier transform of the two particle correlation function

is approximated by a polynomial Ĉ2(k) = Ĉ20+ Ĉ22k
2+ Ĉ24k

4 (odd powers are prohib-

ited by symmetry) which we use to fit the first peak of the correlation function. These

approximations considerably speed up the calculations at the cost of the peaks in the

atomic density function that represent the positions of the atoms becoming more widely

spread. The excess free energy term thus becomes

∆Fex/kBTρ0 =

∫︂
dr

[︃
BX

ψ

2
(1 + 2∇2 +∇4)ψ

]︃
(2.9)

where the constants Ĉ20,Ĉ22 and Ĉ24 are chosen so that only one constant remains.
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The final form of the free energy functional in the PFC model is therefore

∆F/kBTρ0 = F =

∫︂
dr

[︃
BL

2
ψ2 − t

3
ψ3 +

v

4
ψ4 +BX

ψ

2
(2∇2 +∇4)ψ

]︃
(2.10)

=

∫︂
dr

[︃
∆B

2
ψ2 − t

3
ψ3 +

v

4
ψ4 +BX

ψ

2
(1 +∇2)2ψ

]︃
(2.11)

where BL = ∆B + BX . BL and BX are isothermal compressibilities of the liquid and

solid phase. The initial PFC model [5, 6] was drawn from similarities to other pattern

formation models, such as the Swift-Hohenberg model, and did not include the cubic

term in the functional. This term can be obtained from the CDFT derivation and is in

practice used to adjust the equilibrium density.

2.4 Dynamic equations

The dynamic equations in PF and PFC models are derived from the free energy func-

tional. Depending on the conservation laws for the evolving quantities, Hohenberg and

Halperin [34] classified the derivation of dynamic equations in three main model types.

Model A is used to evolve a non-conserved order parameter field α,

∂α

∂t
= −M

(︃
δF

δα

)︃
+ θ (2.12)

model B describes the dynamics of a conserved order parameter β

∂β

∂t
=M∇2

(︃
δF

δβ

)︃
+ θ (2.13)

and model C describes the dynamics in a system of co-evolving conserved and non-

conserved order parameters

∂α

∂t
= −Mα

(︃
δF

δα

)︃
+ θα

∂β

∂t
=Mβ∇2

(︃
δF

δβ

)︃
+ θβ (2.14)

where the constants M describe mobility and θ describe thermal fluctuations.
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The PFC model is evolved using dissipative dynamics of model B [4, 26]

∂ψ

∂t
= Γ∇2

(︃
δF

δψ

)︃
+ η = Γ∇2

(︁
BLψ − tψ2 + vψ3 +BX(2∇2 +∇4)ψ

)︁
+ η (2.15)

where Γ is a constant normally set to 1 and η is stochastic noise with zero mean and

correlations ⟨η(r, t)η(r′, t′)⟩ = −ΓkBT∇2δ(r − r′)δ(t− t′), set to 0 in this thesis.

2.5 Phase diagram

The PFC equation 2.11 has no analytical solutions, therefore in order to derive quantita-

tive conclusions about the phases that can be formed in the model, some approximations

must be made. Due to the scaling of the computational power required for simulations,

all simulations in this thesis were performed in 2D as this suffices to verify the developed

improvements. Therefore we are interested in a phase diagram of 2D PFC model. To be

able to analytically describe the dependence of the free energy on parameters, we take

a one-mode approximation of the atomic density function. In 2D the crystalline phase

has triangular symmetry, and therefore the one mode approximation to the solution is

ψ(r) =A
3∑︂

j=1

(︂
eikj·r + e−ikj·r

)︂
+ ψ (2.16)

=2A

3∑︂
j=1

cos(kj · r) + ψ (2.17)

where ψ is the average density and

k1 =k0(−i
√
3/2− j/2), k2 =k0j, k3 =k0(i

√
3/2− j/2) (2.18)

are the basis vectors of the 2D crystalline phase with triangular symmetry. Substituting

the ansatz (2.17) into equation (2.11) and noting that all terms apart from constant

terms vanish in the integration over the entire domain, we obtain [27]

f = F/V = BL

(︄
ψ
2

2
+ 3A2

)︄
− t

(︄
ψ
3

3
+ 2ψA2 + 4A3

)︄

+ v

(︄
ψ
4

4
+ 9ψ

2
A2 + 12ψA3 +

45

2
A4

)︄
+ 3BX(−2k20 + k40)A

2 (2.19)
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In calculation it is necessary to take into account that for some combinations of wave

vectors their sum is zero, and therefore the result is a non-vanishing constant term (i.e.

k1 + k2 + k3 = 0). We derive the free energy optimal wave vector [27]

∂f

∂k0
= 12BXA

2(−k0 + k30) = 0 (2.20)

with solutions k0 = 0,±1. k0 = 0 corresponds to the liquid state where the atomic

density function is constant in space, ψ(r) = ψ. The free energy of the liquid state is

therefore

fliquid =
BL

2
ψ
2 − t

3
ψ
3
+
v

4
ψ
4 (2.21)

To derive the free energy of the solid state, we insert k0 = 1 into equation (2.19) and

take a derivative [27]

∂f

∂A
= 6BLA− t(4ψA+ 12A2) + v(18ψ

2
A+ 36ψA2 + 90A3)− 6BXA = 0 (2.22)

with solutions A0 = 0 and

A1,2 =
t− 3vn0 ±

√︂
t2 + 24tvψ − 36v2ψ

2 − 15v∆B

15v
(2.23)

The optimal phase for given parameters is therefore determined by comparison of the

free energies given by inserting the parameters (A, k0) that describe the given phase

into the free energy equation (2.19). We derive the coexistence regions using a common

tangent construction and solve the equations numerically. The phase diagram of the

original PFC model [6] is presented in Fig. 2.3. We note that in 2D PFC model a

striped/planar phase can also be stabilized, therefore in order to derive the complete

phase diagram, we would have to repeat the procedure of deriving the free energy of

the selected phase for the striped phase as well, using a striped phase ansatz instead of

the ansatz for the crystalline phase in eq. (2.17). Since this thesis is mainly concerned

with simulations in the crystalline phase, we will not perform this derivation.
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Figure 2.3: Phase diagram of the original PFC model [6]. Reprinted figure with permis-
sion from Elder and Grant, Physical Review E 70, 051605 (2004). Copyright (2019) by
the c⃝ American Physical Society. DOI: http://doi.org/10.1103/PhysRevE.70.051605.

2.6 Elasto-plasticity in the PFC model

The PFC model is based on minimization of the free energy given by a functional that

is designed to favour periodic solutions. The periodicity of solutions already guarantees

that the elasticity will be properly included in the model. If we expand the free energy

of the whole system around the equilibrium lattice constant aeq, the dependency on

lattice constant a

F (a) = F (aeq) +
∂F

∂a
|aeq⏞ ⏟⏟ ⏞

=0

(a− aeq) +
1

2

∂2F

∂a
|aeq(a− aeq)

2 + · · · (2.24)

forms a Hooke’s law [4]

∆F =
1

2

∂2F

∂a
|aeq(∆a)2 (2.25)

since F is minimal for a = aeq and therefore the first derivative is zero (∆a = a− aeq,

∆F = F (a)− F (aeq)).

The initial PFC model could already demonstrate the familiar stress-strain relation-

ship and transition from elastic to plastic deformations [6]. However, since the PFC
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model is based on diffusive processes, the correct treatment of the plastic deformations

requires an additional improvement to the model in the form of a second time derivative

[35]. The stress-strain curve of the PFC model shows the initial elastic region followed

by the region of plastic deformations. Figure 2.4 presents this relationship for systems

with different average grain sizes.

Figure 2.4: Stress-strain plots for a modified PFC model developed by Stefanovic et al.
[35]. Reprinted figure with permission from Stefanovic, Haataja and Provatas, Physical
Review E 80, 046107 (2009). Copyright (2019) by the c⃝ American Physical Society.
DOI: http://doi.org/10.1103/PhysRevE.80.046107.

Elastic constants in the PFC model can be calculated from the free energies of

deformed samples. The type of the deformation determines the transformation of the

crystal lattice. Three different deformations representing bulk, shear and deviatoric

deformation are given by the following transformations (in 2D) [6]:

ψblk(r) = ψ(x/(1 + ξ), y/(1 + ξ)) (2.26)

ψshr(r) = ψ(x+ ξy, y) (2.27)

ψdev(r) = ψ(x/(1 + ξ), y/(1− ξ)) (2.28)

where ξ is the dimensionless deformation parameters. In order to derive an analytical

expression for the free energies and derive the elastic constants, we use the approxima-

tion of the atomic density function in eq. (2.17) and the note that for a 2D system, the
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free energy of deformed lattices under specified deformations is [36, 37]

Fblk = Fmin + [C11 + C12]ξ
2 + . . . (2.29)

Fshr = Fmin + [C44/2]ξ
2 + . . . (2.30)

Fdev = Fmin + [C11 − C12]ξ
2 + . . . (2.31)

The resulting elastic constants for the case of a simple 1-mode PFC model are [6]

C11/3 = C12 = C44 = α/4 (2.32)

where α = A2/4. The simplest form of the PFC model therefore has all the ex-

pected elastic constants with correct symmetry (for triangular system we expect C11 =

C12 + 2C44). On the downside, only one elastic constant can be chosen to match the

parameters of a given material.
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Chapter 3

Amplitude Expansion of the
Phase-Field Crystal Model

3.1 Introduction

The amplitude expansion of the phase field crystal model (APFC) is an extension of the

PFC model that expresses the atomic density function in terms of complex amplitudes,

describing amplitudes of waves aligned with a chosen set of basis vectors. In Fig. 3.1

the relationship between the complex amplitudes and the atomic density is illustrated.

The extension was initially developed by Goldenfeld et al. [7, 8] and was derived from

the PFC model using a renormalization group based approach. Figure 3.2 presents an

example of APFC model simulations.

The APFC model has already been used for investigation of grain boundaries and

grain boundary motion in 2D and 3D [7, 8, 38–43], heteroepitaxial ordering of thin

films [44–47] and structural phase transitions [48]. It has been improved to describe

binary systems [10, 49, 50] and different crystal structures (honeycomb, square in 2D,

fcc and bcc in 3D) [46, 48, 49, 51, 52]. Developed APFC model improvements also

include the ability to achieve instantaneous mechanical equilibrium [53], coupling of the

microstructure evolution to an external field [54] and tuning the energies of defects [55].

The slow variance of the complex amplitudes used in the model allow AMR tech-

niques to be used in the APFC model [9], and the sum of squares of the amplitudes

indicates the aggregate state of the matter, connecting the APFC models to the PF

models [43].

19



Chapter 3. Amplitude Expansion of the Phase-Field Crystal Model

Figure 3.1: Idea of the complex amplitudes: express the fast varying atomic density
field ψ with slowly varying complex amplitudes Aj . The atomic density field ψ changes
rapidly on a length scale of the atomic lattice a0, while the complex amplitudes Aj

change more slowly over length scales comparable with the interface width w.

Figure 3.2: Example of APFC simulations. Left image presents ℜ(A1). The pattern of
periodic oscillations in the complex amplitudes is called “beats” and is an expression of
the rotation of the grains. Faster beating indicates grains that are rotated by a larger
angle with regard to the initial choice of the base vectors kj . Right image presents∑︁

j |Aj |/3. The values of the complex amplitudes drop in dislocation cores and in the
liquid regions.
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3.2 APFC model

The APFC model has been derived from the PFC model in three main ways. The first

derivation [7–9, 38] was based on renormalization group approach, the second option is a

multiple-scales expansion used in the works of [49, 50, 56, 57] and the third possibility is

to use a volume averaging and coarse graining approach [48, 58, 59]. The last mentioned

approach has also been used to derive an APFC model capable of modelling structural

transformations in solid state with two different crystal symmetries coexisting [48]. The

approach presented here is based on volume averaging and coarse graining technique.

In the APFC model, the complex amplitudes Aj represent the amplitudes of density

waves, aligned with a set of basis vectors. To model crystals with triangular symmetry,

the following ansatz is used

ψ =

3∑︂
j=1

Aje
ikj·x +

3∑︂
j=1

A∗
je

−ikj·x +ψ

=
3∑︂

j=1

Aje
ikj·x +CC +ψ (3.1)

where CC denotes the complex conjugate of the preceding expression, Aj = Aj(r) are

the spatially dependant complex amplitudes, kj are basis vectors defined in the same

way as in eq. (2.18)

k1 =k0(−i
√
3/2− j/2), k2 =k0j, k3 =k0(i

√
3/2− j/2) (3.2)

with k0 = 1 and ψ = ψ(r) is the spatially dependant average density. The coarse

graining technique convolves the density function with a volume-averaging, smoothing

function as [18, 48, 60]

⟨f(r)⟩V =

∫︂ +∞

−∞
drf(r′)ξV (r− r′) (3.3)

where f(r′) is the function being coarse grained, ξ is the smoothing function and ⟨f(r)⟩
is the coarse grained function. The smoothing function is normalized to unity∫︂ +∞

−∞
drξV (r) = 1 (3.4)

In our case we choose a normalizing function that is constant inside the unit cell of the
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Chapter 3. Amplitude Expansion of the Phase-Field Crystal Model

crystal and zero elsewhere

ξV (r) =

⎧⎨⎩1/V0 inside unit cell

0 otherwise
(3.5)

In order to derive the coarse grained free energy functional we insert the ansatz (3.1)

into the PFC model’s free energy (2.11), change the order of integration and derive the

free energy functional in terms of the complex amplitudes [48, 52]

F =

∫︂
dr

[︄
ψ
2

2
− t

ψ
3

6
+ v

ψ
4

12
+ (1− tψ + vψ

2
)

⎛⎝ 3∑︂
j=1

|Aj |2
⎞⎠

−(t− 2vψ)[A1A2A3 +A∗
1A

∗
2A

∗
3] +

v

2

⎡⎣ 3∑︂
j=1

|Aj |4
⎤⎦

+2v

⎡⎣ 3∑︂
j=1

3∑︂
m>j

|Aj |2|Am|2
⎤⎦+BX

3∑︂
j=1

|(∇2 + 2ikj∇)Aj |
]︄

(3.6)

where we have truncated the series expansion of Ĉ2 in Fourier space at k4 like before.

To derive more accurate results it is possible to keep the full form of the Ĉ2 and perform

the numerical integrations in Fourier space [48], or extend the series to higher powers

of k [61]. The dynamic equations for the amplitudes can be derived using model C

dynamics [49] described in eq. (2.14)

∂ψ

∂t
= ∇2 δF

δψ
(3.7)

∂Aj

∂t
= − δF

δA∗
j

(3.8)

It is also possible to derive an amplitude representation of the equations for binary alloy

[49] or include fast relaxation of elastic deformations into the equations [53].

3.2.1 Comparison of APFC and PFC models

In comparison to the PFC models, the APFC model has several advantages. First, as

the amplitudes change more slowly with space the spacing between the computational

points can be larger. This increases the size of the domain that we can model and the

time span through which we can track the evolution of the microstructure on similar
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hardware as with the PFC model. Second, as the complex amplitudes effectively track

the amplitudes of the atomic density function and do not describe the fluctuations

in atomic density on the scale of the atomic lattice, the amplitude equations have

properties that can enable the use of AMR techniques and thus increase the reach of

the simulations even further.

As a tradeoff, the APFC formulation also introduces some new problems. First,

if the grains are not aligned with the initial choice of base vectors, the rotation of

the grains is expressed through the so called beats in the amplitudes, which reduces the

applicability of the AMR techniques. This problem has been solved either by converting

the complex amplitudes into their polar representation [9] or by the introduction of an

auxiliary local rotation field [62] as described in Chapter 5. Second, since the amplitudes

do not track the association between rotation of the grains and the basis vectors, an

unphysical grain boundary appears between grains misaligned for a multiple of the

crystal’s symmetry rotation. This limits the application of the APFC models merely to

cases where misalignment between grains is small (less than half of a crystal’s symmetry

rotation). Chapters 6 and 7 propose and test a solution to this problem.

3.2.2 Grain rotation in APFC models

Since the ansatz for the PFC model presented in eq. (3.1) describes the atomic density

function of the PFC model in terms of amplitudes of the waves aligned with the initial

choice of base vectors in equation (3.2), one might expect that the APFC model is

limited to modelling only grains, aligned with the initial choice of base vectors. This is

not correct, as in the APFC model, the rotation of the grains can be expressed through

the so called beats in the complex amplitudes Aj . We can derive the beats by expressing

the atomic density function of a grain, rotated by angle ϑ with regard to the base vectors

in eq. (3.2).

ψ(ϑ) =

3∑︂
j=1

Aϑ
j e

ikj(ϑ)·x +CC +ψ (3.9)

=

3∑︂
j=1

Aϑ
j e

iδkj(ϑ)eikj ·x +CC +ψ (3.10)

=
3∑︂

j=1

Aje
ikj ·x +CC +ψ (3.11)
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where kj(ϑ) = kj + δkj(ϑ) are rotated basis vectors and Aϑ
j are the rotated complex

amplitudes (the amplitudes we would have, had we chosen a rotated set of the initial

basis vectors). By comparing the terms with matching exponential functions, we derive

the following relationship between rotated and non-rotated complex amplitudes:

Aj = Aϑ
j e

iδkj(ϑ)·x (3.12)

meaning that a grain that is rotated by an angle of ϑ will exhibit so called beats, that are

periodic oscillations in phase in a direction parallel to δkj(ϑ), with increasing frequency

of the beats as the rotation increases. Figure 3.3 illustrates this phenomena, showing

beats in three grains rotated by 0◦, 5◦ and 25◦ in combination with the rotated and

non-rotated base vectors kj .

k3 , A3

k2 , A2

k1 , A1

Figure 3.3: Base vectors for the complex amplitudes Aj and their rotation. Grain
rotation is expressed through the so-called beats in the complex amplitudes of rotated
grains in the APFC model. Right image shows the beats in ℜ(A1), in three grains,
rotated for (clockwise from bottom left) θ = 0◦, 5◦ and 25◦.

The invariance of the model to the rotation of the chosen base vectors is also ex-

pressed through the rotational covariance of the operator Lj = ∇2 + 2ikj∇ which is

applied on the complex amplitudes Aj . In derivation of the free energy and dynamic

equations for the complex amplitudes the operator ∇2 is substituted for its covariant

form ∇2 → ∇2 + 2ikj∇− |kj |2 [48].
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3.2.3 Unphysical grain boundary in APFC models

One of the shortcomings of the amplitude representation is the occurrence of an un-

physical grain boundary between grains rotated for a crystal’s symmetry rotation [10].

The origin of this phenomena can be attributed to the inability of the APFC model to

correlate the rotation expressed through the beats in the complex amplitudes with the

rotations of the base vectors that represent the beating amplitudes. If, for example, a

grain boundary is formed between grains rotated by 0◦ and 60◦, both grains represent

physically the same crystal in systems with triangular symmetry, but the rotation of

the second grain is expressed through the beats in amplitudes which are not matched in

the first grain. Therefore a grain boundary appears between both grains, even though

there should be no grain boundary. Figure 3.4 presents the real part of the first complex

amplitude in grains rotated by 0◦, 60◦, −30◦ and +30◦, forming vertical grain bound-

aries with 60◦ mismatch. We can observe that the beats in complex amplitudes on

both sides of the vertical grain boundary do not align indicating an increase in the free

energy there (a grain boundary), even though the vertical grain boundary, representing

a 60◦ mismatch that matches the crystal’s symmetry rotation, physically does not exist

(a crystal rotated by its symmetry rotation is the same as the original crystal). To even

better demonstrate the problem, we simulated a set of 10 circular grains growing in

an undercooled melt, with rotations in steps by 6◦, from −27◦ to +27◦, presented in

Fig. 3.5. The mismatch between each pair of grains is the same (6◦, taking into account

that rotations for −30◦ and +30◦ represent the same crystal) and therefore we would

expect similar grain boundary structures. This is true for all grain boundaries except

for the one between grains rotated by −27◦ and +27◦, which reflects the properties of

a grain boundary with 54◦ mismatch. The enlarged excerpts of the image present the

structure of the unphysical grain boundary, and the correction to the structure that is

achievable with the solution we propose in Chapter 6. The dislocation cores are areas

in the images where the free energy raises above the free energy of the crystal, as shown

in the excerpts, or areas where the sum of all amplitudes
∑︁

j |Aj |/3 decreases below a

certain value, as shown in the image of the entire simulation domain. We can observe

that the dislocation density, after application of our proposed correction, is the same

on all grain boundaries.
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Figure 3.4: Unphysical grain boundary is formed due to the mismatch between beats
that represent the rotated grain and the non-rotated grain. The image shows ℜ(A1)
in 4 seeds, clockwise from (0, 0) rotated by 0◦, +30◦, −30◦ and 60◦. The unphysical
grain boundary is formed on the vertical line separating these grains as the grains on
the right are rotated by 60◦ more than the grains on the left, therefore the complex
amplitudes do not match and an unphysical grain boundary is formed, even though the
grains represent physically the same crystal.

3.3 Polar representation of complex amplitudes

In order to eliminate the problem of beats in complex amplitudes Aj , Athreya et al.

[9] derived a polar representation of the complex amplitude equations. The complex

amplitude and phase and amplitude equations are listed here for comparison.

∂Aj

∂t
=L̃jAj − 3Aj |Aj |2 − 6Aj

∑︂
k:k ̸=j

|Ak|2 − 6ψ
∏︂

k:k ̸=j

A∗
k (3.13)

∂Ψj

∂t
=(r + 3ψ

2
)[−Ψj + CRe(Ψj ,Φj)]− 3Ψj

⎛⎝Ψ2
j + 2

∑︂
k ̸=j

Ψ2
k

⎞⎠
− 6

ψ

Ψj

(︄∏︂
k

Ψk

)︄
cos

(︄∑︂
k

Φk

)︄
∂Φj

∂t
=
(r + 3ψ

2
)CIm(Ψj ,Φj)

Ψj
+ 6

ψ

Ψ2
j

(︄∏︂
k

Ψk

)︄
sin

(︄∑︂
k

Φk

)︄
(3.14)
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3.3. Polar representation of complex amplitudes

Figure 3.5: Formation of an unphysical grain boundary between grains. First row: 10
seeds with rotations in steps by 60, from −27o to +27o are placed in a circle and grown
so that a grain boundary is formed between each pair of neighbouring seeds. The region
with the boundary between seeds with orientations of −27o and +27o is enlarged in the
second row where the free energy is presented. Left image in the second row shows the
free energy formed in an APFC model as presented in this chapter, and the right image
shows the free energy formed in an improved model that we present in later chapters
of this thesis and can remove this phenomena. The left image effectively represents a
grain boundary with 54◦ mismatch as the APFC model can not connect the rotation of
basis vectors with the rotation expressed by the beats of the complex amplitudes, while
the right image shows the correct structure of a 6◦ grain boundary.

where

L̃j = (1−∇2 − 2ikj · ∇)(−r − 3ψ
2 − {∇2 + 2ikj · ∇}2) (3.15)

is a rotationally covariant operator and the complex amplitudes Aj are split into phase

and amplitude as Aj = Aj = Ψexp(iΦj) and

CRe(Ψj ,Φj) = Re
{︃
(∇2 + 2ikj∇)(Ψj exp(iΦj)

exp(iΦj)

}︃
CIm(Ψj ,Φj) = Im

{︃
(∇2 + 2ikj∇)(Ψj exp(iΦj)

exp(iΦj)

}︃
(3.16)
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To derive the dynamic equations for the phase and amplitude (3.14) in presented, sim-

plified form, it is necessary to discard third and higher order derivatives of Ψj and Φj ,

assume a “frozen gradient approximation” which presumes that the gradient of phase

∇Φj is constant within all solidified grains and split the computational domain into

two parts, the interior of the solidified grains where the phase and amplitude equa-

tions (3.14) are solved and the area where material is not completely solidified (so-

lidification front and area around dislocations and on the boundary between grains)

where the complex amplitude equations (3.13) are solved. Furthermore, care must be

taken as the phase of the amplitudes Φj calculated from the complex amplitudes Aj as

Φj = arctan(Im(Aj)/Re(Aj)) has discontinuities where it changes for 2π.

Despite the challenges listed, Athreya et al. [9] successfully implemented a numerical

algorithm that could remove the beats in variables and demonstrated mesh refinement

in all grains. This was a significant step towards enabling APFC simulations in larger

domains. Unfortunately, the procedure was not widely adopted and presently most

APFC simulations still use regular grid. Another possibility to solve this problem is

presented in [62] (chapter 5) and is a part of the contribution of this thesis.

3.4 Connection to phase-field models

Phase-Field models have been successfully applied to many phenomena [63]. The success

of such models originates in transforming the description of a grain boundary or a

solidification front from a set of equations describing the phenomena at the interface to

a set of continuous equations expressing the evolution of a continuous phase field that

does not require knowing where the interface is at all times. Since the amplitude of the

complex amplitudes (or their sum, i.e.
∑︁

j |Aj |2) also describes the aggregate state of the

matter, the PFC model in its amplitude representation can be seen as the connecting

link between the first-principles derived CDFT methods and the phenomenologically

founded PF methods. Here we briefly give an example of a phase field model that can

be derived from APFC models, which in turn can be derived from PFC models and

connected to first principles through CDFT. The connection is made by expressing the

complex amplitudes in terms of a variable denoting the aggregate state of the material

ϕ (ϕ = 0 in liquid and ϕ ̸= 0 in solid) and a slowly varying deformation vector u as [49]

Aj = ϕ exp(ikj · u) (3.17)
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The derived phase field free energy functional for a binary alloy is

F =dr

[︄{︃
3∆B0ϕ

2 − 4tϕ3 +
45

2
vϕ4 + (ω + 6Bl

2ϕ
2)
ψ2

2
+
u

4
ψ4

}︃

+

{︃
K

2
|∇ψ|2 + 6BX

0 |∇ϕ|2
}︃
+ 3BX

0

{︄
2∑︂

i=1

(︃
3

2
U2
ii

)︃
+ UxxUyy + 2U2

xy

}︄
ϕ2

+ 12αBX
0

{︄
−ϕ∇2ϕ+

2∑︂
i=1

Uiiϕ
2

}︄
ψ

]︄
(3.18)

where ψ is a concentration field and Uij = (∂ui/∂rj + ∂uj/∂ri)/2 is the linear strain

tensor. The connection is apparent from the degree of similarity between the terms in

the curly brackets {. . . } and the PF models for eutectic and dendritic solidifications

[64, 65], see [49] for derivation.
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Chapter 4

Numerical methods

4.1 Introduction

Numerical methods describe our search for usable solutions to mathematical problems

where analytical solutions do not exist or we haven’t found them yet. The search for

approximate solutions to problems we can’t solve exactly has been present in human

history for a long time. One of the first examples is the use of a numerical algorithm to

calculate the square root of 2 used already in Babylon, where the results of the algorithm

had to be precise enough to be usable in construction and astronomy (see Fig. 4.1). In

Figure 4.1: Babylonian clay tablet with numeric approximation of
√
2, accurate to about

6 decimal digits. The Babylonian algorithm to calculate the square root of a number
N is: 1. make an initial guess x0, 2. improve the guess by xn+1 = (xn + N/xn)/2,
3. repeat until convergence. Copyright Bill Casselman and Yale Babylonian Collection
[66].

modern computational materials science we build material models with emphasis on
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the usability of the results. This means that we have to balance the precision of the

model against the computational time that the simulation would require, which demands

we make efficient use of the computational resources at our disposal. AMR algorithms

allow us to use the computational power efficiently, as they effectively reduce the amount

of computational power spent on modelling parts of the material where “not much is

happening” (i.e. the interior of solidified grains) and focus it on where the important

phenomena occurs (i.e. on the solidification front or on the grain boundaries). The

success of AMR techniques is based on spatial averaging in the sense that where the

fields that represent the material do not change much, the average field values of larger

amounts of material can be modelled together in effectively coarser computational mesh.

This approach to reducing the number of computational nodes arises form the ability

to average fields over long distances, which cannot be performed on the atomic density

field of the PFC model as that filed varies quickly. The APFC model enables the

application of the AMR techniques as the complex amplitudes vary on much slower

scales and change rapidly only where important phenomena occurs. Improvements that

enable APFC modelling on larger scales are therefore an important stepping stone in

the development of models that can describe microstructure in larger domains.

4.2 Finite difference method

The finite difference method approximates the function on a discrete computational

mesh. In order to be able to do that, the approximated function has to be “properly

behaved” (i.e. it has no poles in the range where it is approximated) and can be

expanded into a Taylor series. Most functions describing physical properties are such,

so this method is widely applied to solving real physical problems. The main problem

we want to solve in this thesis is described by the dynamic equations for the complex

amplitudes, i.e. the equations described in (3.13) repeated here

∂Aj

∂t
=L̃jAj − 3Aj |Aj |2 − 6Aj

∑︂
k:k ̸=j

|Ak|2 − 6ψ
∏︂

k:k ̸=j

A∗
k (4.1)

for

L̃j = (1−∇2 − 2ikj · ∇)(−r − 3ψ
2 − {∇2 + 2ikj · ∇}2) (4.2)

which have no known analytical solutions. The system of equations (4.1) presents an

initial value problem [67] as the initial values of Aj(r) are known and defined by the
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4.2. Finite difference method

seeds with which we start the simulation. In order to solve the given system of equations,

we need to discretise the space and time domains of our simulation. The continuous

function of space is in the simplest form discretised by sampling at regular intervals.

A differential equation is then solved numerically by approximating the derivatives

by a chosen differentiation scheme. In the 1D case we derive the differentiation scheme

from the Taylor expansion of function f around point x

f(x+ h) = f(x) + f ′(x)h+ h2(. . . )

⇓ (up to h2)

f ′(x) =
f(x+ h)− f(x)

h

⇓ (discretised on regular grid, x = nh, f(nh) = fn)

f ′n =
fn+1 − fn

h
(4.3)

where the approximation in (4.3) is accurate only in the first order. To increase the

accuracy of the differentiation scheme, we may include terms further away from the

point of evaluation (i.e. fn+2). In 2D space is sampled at regular intervals in both

dimensions as shown in Fig. 4.2. In the simulations we used the following differential

schemes:

∇2fi,j =

⎡⎢⎢⎢⎢⎢⎢⎣
1/4 1/2 1/4

1/2 −3 1/2

1/4 1/2 1/4

⎤⎥⎥⎥⎥⎥⎥⎦
fi,j
∆x2

∂

∂x
fi,j =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0

−1 0 +1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
fi,j
∆x

∂

∂y
fi,j =

⎡⎢⎢⎢⎢⎢⎢⎣
0 +1 0

0 0 0

0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎦
fi,j
∆x

(4.4)
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where the schemes should be interpreted as multiplication with corresponding relative

indexes of fi,j

Mfi,j =
+1∑︂

∆i=−1

+1∑︂
∆j=−1

M2+∆i,2+∆jfi+∆i,j+∆j (4.5)

In the simulations we used first order differential schemes that require only the nearest

neighbours for evaluation, as this proved less error prone to implement on an adaptive

mesh. We only used the stencils above, therefore to evaluate operator LjAj we had to

proceed in three steps and store the intermediate results in auxiliary variables

{∇2 + 2ikj · ∇}Aj ⇒ (−r − 3ψ
2 − {∇2 + 2ikj · ∇}2)Aj

⇒ (1−∇2 − 2ikj · ∇)(−r − 3ψ
2 − {∇2 + 2ikj · ∇}2)Aj

= LjAj (4.6)

We then solved the evolution equations for Aj numerically using an explicit iteration

scheme

Aj,t+1 = Aj,t +
∂Aj,t

∂t
(4.7)

4.3 Adaptive mesh refinement

The main benefit of the AMR algorithms is their ability to put more computational

points into the parts of the simulated domain where interesting things happen, and

by doing this effectively dedicate computational power to computing interesting things.

The AMR solver we used in the simulation is the work of Greenwood and a detailed

description of the implementation is provided in [29]. Here only a brief summary will

be given.

In the case of computational materials science on the level where we want to study

defects in crystal lattices, what is interesting is the defects in crystal lattices, and there-

fore we want more computational points around topological defects, on grain boundaries

and on the solidification front. This is achieved is by splitting the computational nodes

in half (in 4 parts 2D, 8 parts in 3D) until the maximal change of any of the complex
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Figure 4.2: Discretisation of space with a regularly spaced grid of points. The continuous
function f(r) is represented by the values it takes on a regularly spaced grid of points
ri,j = êxi + êyj. The derivatives are calculated using the stencils in eq. (4.4), the
arrows at (i, j) connect the computation points that are needed to evaluate ∂fi,j/∂x
and ∂fi,j/∂y.

amplitudes Aj over one node reaches some pre-defined constant value. This effectively

refines the mesh in areas where the complex amplitudes Aj change more rapidly. Care

must be taken not to choose the refinement criteria too loosely, as the mesh refinement

is done only every few steps of the calculation and in case the refinement criteria would

be too loose, a moving solidification front or grain boundary could fall out of the area

where the mesh is appropriately refined.

In order to be able to solve PDEs on an adaptive mesh, we need to know how to

connect computational elements on various levels of refinement. Figure 4.3 presents and

example of an adaptive mesh. The dots in the mesh represent computational points,

and the squares and circles represent the computational nodes. In order to be able to

connect the values on different levels of refinement, we need to add a layer of ghost

nodes between the computational nodes. Computational nodes are the nodes in which

the evolution of the fields is calculated (i.e. using eq. (4.7)), and the ghost nodes

are the nodes in the mesh that connect the computational nodes at different levels of
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Figure 4.3: Adaptive mesh. The arrows at marked points connect the mesh nodes
that are needed to evaluate simple stencils at given points. Marked points represent
computation nodes (A) with some neighbours at a lower refinement level, (B) with
a ghost neighbour at the same level of refinement, (C) with only computation node
neighbours at the same level of refinement and ghost nodes (D) and (E) where the
arrows point to the neighbours that are averaged in the ghost nodes.

refinement. While the values of the fields are continuously updated using an iterative

scheme in the computational nodes, the values in the ghost nodes are at each step of the

calculation derived by averaging the field values in neighbouring computational nodes.

In Fig. 4.3 we can see an adaptive mesh on three different levels of refinement (∆x,

2∆x and 4∆x). The computation on this mesh in computational nodes is performed

using the same stencils as we would use on a regular grid. In points marked as (A), (B)

and (C) in Fig. 4.3, the values for derivatives are calculated using the stencils listed in

(4.4). There is no difference between values obtained from nodes on different levels of

refinement (case (A)), values obtained from ghost nodes (case (B)) and values obtained

from computational nodes on the same level of refinement (case (C)). The update of
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values in ghost nodes is made by averaging the neighbouring computational nodes as

shown in points (D) and (E). As we are using stencils that require only immediate

neighbours, we need only one layer of ghost nodes in the mesh. In case we would want

to use more sophisticated stencils, we would need to add more ghost nodes to the mesh

(the number of layers of ghost nodes should be the same or higher than the number of

nearest neighbours used in the stencils).

When using the algorithms described in this thesis, special care must be taken in

how values from one node are treated in the other node with regard to the changes

in local rotation, see description of our improvements in Chapter 5 for details. The

main changes from the ordinary PF use of the AMR algorithm are that the values of

the complex amplitudes Aj are always converted into a system aligned with the central

node before use. When averaging for calculation of values in the ghost nodes, averaging

is done while taking into account the changes in local rotation between the nodes.
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Chapter 5

Adaptive Mesh Refinement in
APFC Model

This chapter introduces improvements to an amplitude expansion of the phase field crys-

tal model (APFC). An auxiliary field describing local grain rotation is introduced and

used to enable the adaptive mesh to be coarsened in all grains, regardless of their orien-

tation. Only a Cartesian representation of the amplitude equations is used. Copyright

of this chapter is held by c⃝ American Physical Society 1.

5.1 Introduction

Many industrially important problems relate to the ability to understand and predict the

microstructure evolution during thermomechanical processing of polycrystalline materi-

als. In field of metallic materials, these include the processes of solidification, solid state

phase transformations, recrystallization, grain growth, nucleation and growth/dissolution

of precipitates, etc. Predicting the microstructure’s evolution generally requires accu-

rate models to describe processes simultaneously occurring at various spatial and tem-

poral scales, ranging from atomistic to mesoscopic and macroscopic and from atomic

vibrations to diffusive times. Despite modern computational resources, even today these

large variations in time and length scales in material modeling represent a huge research

challenge. In past decades, several approaches were developed to study microstructure’s

1Reprinted with permission from Berčič and Kugler, Physical Review E 98, 033303 (2018). Copyright
(2019) by the c⃝ American Physical Society. DOI: http://dx.doi.org/10.1103/PhysRevE.98.033303.
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evolution at various length scales, i.e. molecular dynamics and kinetic Monte Carlo on

the atomistic scale, the cellular automata, Potts-Monte-Carlo and phase field (PF)

methods on the mesoscopic scale, and continuum-based methods on the macroscopic

scale [68]. To establish a way to bridge these models addressing phenomena at various

scales, a range of approaches has been proposed [2, 69]. In recent years, the materials

engineering field has seen the increasingly popular concept of integrated computational

materials engineering (ICME) which links material models at multiple scales hierarchi-

cally [3]. While approaches like ICME may be of great practical value by associating

material models at different scales with processing technologies and product design,

they may be associated with difficulties of discontinuous transitions between scales that

can lead to nonphysical phenomena. In contrast, the PF method in combination with

adaptive mesh refinement was used to study the microstructure evolution on spatial

scales spanning several orders of magnitude [4, 70]. Its success lies in expressing the

boundary conditions on the solid-liquid interface with a partial differential equation for

the evolution of a phase field variable. As the evolved phase field is a continuous func-

tion of space, the method is not well suited for modeling phenomena occurring on an

atomistic scale, as it is averaged out in the phase field variable. To describe the atomic

arrangement, the phase-field-crystal (PFC) methodology was introduced [5, 6]. The

PFC model is a reformulation of the Swift-Hohenberg model [10] and can be derived

from classical density-functional theory under some necessary assumptions[11]. The

method uses a crystal density field to describe the dynamics of atomic structures. It

incorporates elasticity and various topological defects in a natural way. Since the PFC

method was initially developed, it has been improved in multiple ways, enabling it to

be applied to even more problems. PFC models have been extended to describe ma-

terials with different crystal lattices using a 2-mode PFC model [12], model structural

transformations in materials using a constructed 2-particle correlation function (XPFC

model) [14, 15] and extend this approach to stabilize several phases with a 3-particle

correlation function [16, 17], incorporate acoustic waves [20] and spatial anisotropy [21],

describe liquid crystals [22, 23] and model phenomena occurring in ferromagnetic [24]

and ferroelectric multi-component materials [25].

One important PFC model improvement that is increasing in popularity is the

complex-amplitude expansion (APFC) developed by Goldenfeld et al. [7, 8]. The

method uses a renormalization group based approach to express the atomic density

function as a sum of waves, aligned with the reciprocal lattice vectors, and derives

the evolution equations for the amplitudes. This approach offers the possibility to
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bridge the gap between the PFC method and PF methods. Such improvements greatly

increase the size of the modeled material and, combined with other APFC method prop-

erties, offer the ability to study many phenomena in which larger volumes of material

must be modeled at diffusive timescales. This extension has been successfully applied

to the study of grain boundary motion and polycrystalline films [7, 8, 38], structural

phase transitions [48], heteroepitaxial ordering of thin films [44–47] and grain boundary

energies [51, 55]. The method was initially developed for single-component systems

with triangular symmetry in 2D and since then has been extended to binary systems

[10, 49, 50], honeycomb [46, 51] and square [48] lattices in 2D, and fcc and bcc systems

[49, 52] in 3D. The APFC extension was also improved to obtain an instantaneous me-

chanical equilibrium [53], tune the energy of defects and interfaces [55], and couple the

microstructure forming fields to the hydrodynamic velocity field [54].

To further increase the size of the simulated domain, adaptive mesh refinement

(AMR) algorithms can be applied to APFC models, as demonstrated by Athreya et

al. [9]. Despite the AMR APFC model’s initial soccess, some unresolved issues are

preventing its further development [10]. Consequently, most of APFC models still use

simple numerical methods on a fixed grid [10, 38, 44–54]. Therefore, the main purpose of

the present work is to propose a new way for solving problems related to grain rotation

in APFC models. The presented model does not require the use of separate phase

and amplitude equations like in Athreya et al. [9]. Instead, an auxiliary local rotation

field is calculated and used to align the basis vectors with the rotation of grains at all

calculation points.

This contribution is organized as follows. In Sec. 5.2, the main features of the PFC

model and complex amplitude equations used in the present work are recapitulated.

Section 5.3 contains a description of the new model, algorithm, and primary features of

the numerical approach used. In Sec. 5.4, simulations results are presented and, finally,

concluding remarks are given in Sec. 5.5.

5.2 APFC model

Evolution of the density field in the PFC model is given by [5]:

∂ρ

∂t
= Γ∇2

(︃
δF
δρ

)︃
(5.1)
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where F is the free energy functional dependent on local free energy density f(ρ,∇2ρ), Γ

is a constant and η is stochastic noise with zero mean and correlations ⟨η(r, t)η(r′, t′)⟩ =
−ΓkBT∇2δ(r − r′)δ(t− t′). The chosen free energy functional is minimized by a spa-

tially uniform liquid state at high temperatures and by a spatially periodic “crystalline”

phase at low temperatures [5]. A solution with the required form will naturally ex-

hibit the properties observed in the crystals, such as the correct properties of elastic

energy, defects in the crystalline phase, proper grain boundary energy, epitaxial growth,

yield strength of nanocrystalline materials and proper behavior of misfit dislocations as

already shown by Elder et al. [5, 6].

The exact form of the functional used is

f = ρ
[︁
α∆T + λ(q20 +∇2)2

]︁
ρ/2 + uρ4/4 (5.2)

where α, λ, q0 and u are model parameters that can be used to match the properties

of a chosen material. The model’s behavior can be better understood by first rewriting

the free energy in dimensionless units using x = rq0, ψ = ρ
√︁
u/λq40, r = a∆T/λq40,

τ = Γλq60t and F = Fu/λ2q8−d
0 into

F =

∫︂
dx{ψ[r + (1 +∇2)2]ψ/2 + ψ4/4} (5.3)

Conversion of the dynamic Eq. (5.1) yields

∂ψ

∂t
= ∇2{[r + (1 +∇2)2]ψ + ψ3}+ ζ (5.4)

where ⟨ζ(r, τ)ζ(r′, τ ′)⟩ = ε∇2δ(r − r′)δ(τ − τ ′) and ε = ukbTq
d−4
0 /λ2. The equation

(5.4) was introduced by Elder et al. [5, 6] and since then has frequently been referred to

as the PFC equation. The single mode solution of the PFC equation in the solid phase

has triangular symmetry and can be approximated in terms of the complex amplitudes

Aj [7–9] as

ψ ≈
3∑︂

j=1

Aje
ikj·x +

3∑︂
j=1

A∗
je

−ikj·x + ψ (5.5)

42



5.2. APFC model

Figure 5.1: Beats in misaligned grains. The images show (a) real component of the first
complex amplitude ℜ(A1), and (b) the reconstructed atomic density field ψ in three
seeds, rotated for (clockwise from bottom left) θ = 0, π/24 and π/6.

where kj are the reciprocal lattice vectors of a hexagonal crystal

k1 = k0(−i
√
3/2− j/2),

k2 = k0j,

k3 = k0(i
√
3/2− j/2), (5.6)

and k0 the wave number set to k0 = 1 in the present work. This wave number corre-

sponds to the atomic spacing of a0 = 2π/(
√
3/2). Dynamic equations for the coarse

grained complex amplitudes have been derived by Goldenfeld et al. [7, 8]:

∂Aj

∂t
= L̃jAj − 3Aj |Aj |2 − 6Aj

∑︂
k:k ̸=j

|Ak|2 − 6ψ
∏︂

k:k ̸=j

A∗
k (5.7)

where k, j ∈ [1, 3] and

L̃j = (1−∇2 − 2ikj · ∇)(−r − 3ψ
2 − {∇2 + 2ikj · ∇}2) (5.8)

is a rotationally covariant operator. The parameters ψ and r are the dimensionless

average density and the dimensionless temperature proportional to the temperature

difference to a critical temperature Tc. Due to rotational covariance of the operator L̃j ,

multiple orientations of the crystal grains can be modeled using only the set of basis

vectors listed in (5.6).
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Grain rotation in the complex amplitudes equations (5.7) is represented by the so

called beats in the amplitudes of grains, not aligned with the initial choice of basis

vectors [7, 9], as shown in Fig. 5.1. This makes adaptive mesh refinement techniques

ineffective in solving the problem, as the mesh does not coarsen in misaligned grains

due to the fast changing amplitudes caused by the beats. To tackle this problem, an

improved approach using polar representation of the complex amplitudes equations in

combination with the existing representation was introduced by Athreya et al. [9].

The complex amplitudes were split into phase and amplitude as Aj = Ψje
iΦj and

both, phase Φ and amplitude Ψ were evolved separately. The phase is computed as

Φ = arctan(ℑ(Aj)/ℜ(Aj)) making phase Φ a locally discontinuous function, leading to

calculation problems. To resolve problems with discontinuities, the simulation domain

was divided into two subdomains: a liquid region, where the ordinary dynamic equations

(5.7) were evolved, and a solidified region, where the new phase/amplitude equations

were used. Within the solidified region an approximation of a frozen phase gradient was

applied, which eliminated problems with the discontinuities of the phase gradient. As

the conversion between representations is simple, the resulting computational scheme is

efficient and produces significant speedups of the simulations originating from the added

ability to coarsen the adaptive mesh within all grains, regardless of their orientation.

The new approximations used in the framework allow the efficient use of the compu-

tational resources, although some problems still remain. In particular, the problem of

a hidden grain boundary between grains rotated by a multiple of the crystal’s symme-

try, as reported by Spatschek and Karma [10], is not easy to solve. Therefore, other

approaches are needed to study the grain behavior under full grain rotation conditions.

A possible approach is proposed in the following section.

5.3 Description of the new model

5.3.1 Local rotation of the basis vectors

The new model exploits the fact that beats of complex amplitudes in solidified grains

disappear, when the basis vectors for the amplitudes are correctly rotated. A local

rotation field is introduced, and dynamic equations of the coarse grained complex am-

plitudes (5.7) are solved by taking into account the spatially dependent rotation of the

basis vectors kj .
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Density function of a grain rotated by ϑ with regard to the basis vectors can be

written as [9]:

ψ(ϑ) =

3∑︂
j=1

Aϑ
j e

ikj(ϑ)·x +CC +ψ (5.9)

=
3∑︂

j=1

Aϑ
j e

iδkj(ϑ)eikj ·x +CC +ψ (5.10)

=

3∑︂
j=1

Aje
ikj ·x +CC +ψ (5.11)

where kj(ϑ) = kj + δkj(ϑ) are rotated basis vectors and CC denotes the complex

conjugate of the first sum. We derive the connection between the rotated amplitudes

Aϑ
j and non-rotated amplitudes Aj by comparing the terms associated with the same

wave vectors and obtain

Aj = Aϑ
j e

iδkj(ϑ)·x (5.12)

It follows that grains with arbitrary rotations can be described in terms of kj , with

grain rotation resulting in beats of the amplitudes.

As the rotated amplitudes within a perfect, rotated grain remain constant, the

gradient of the rotated amplitudes inside is zero:

∇Aϑ
j = (∇Aj)e

−iδkj ·x +Aj(−iδkj)e
−iδkj ·x = 0 (5.13)

From (5.13) it follows that for a local rotation, at which beats disappear, the following

must hold for the rotated basis vectors:

δkj(ϑ) =
∇Aj

iAj
= kj(ϑ)− kj (5.14)

In simulations we know the amplitudes Aj , but not the local grain rotation. From (5.14)

we can derive the local rotation of the grain in which the beats disappear.

Due to rotational covariance of the operator L̃j and all of its parts used in the cal-

culation, it follows that conversion between basis vectors rotated by a different amount

can be separated from the operator evaluation. The operator defined as

□ϑ = (∇2 + 2ikj(ϑ) · ∇) (5.15)
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is rotationally covariant and therefore the following must hold

□ϑAϑ
j = e−iδkj·x□Aj (5.16)

where □ = □ϑ=0. Further, if we separate operator L̃j into two operators that can each

be evaluated in a single step with a simple differential schema

L̃ϑ
1j =

(︃
−r − 3ψ

2 −
(︂
□ϑ
)︂2)︃

(5.17)

L̃ϑ
2j = (1−□ϑ) (5.18)

L̃ϑ
j = L̃ϑ

2jL̃ϑ
1j (5.19)

then both L̃1j and L̃2j are rotationally covariant. This allows us to apply dynamic

evolution equation even when the rotation of the basis vectors is spatially dependent.

We can numerically apply an operator Õϑ to a locally rotated field X

Õϑ(x) Xϑ(x)(x) =
∑︂
x̃

Γx̃e
−i(k(x)−k(x̃))·x̃Xϑ(x̃)(x̃) (5.20)

where the summation goes over all neighbors included in the operator’s evaluation. Õ
can be any of the rotationally covariant operators (Õ ∈ {L̃ϑ

j , L̃ϑ
1j , L̃ϑ

2j}) applied to any of

the derived fields (X ∈ {Aϑ
j , L̃1jA

ϑ
j , L̃jA

ϑ
j }). x̃ is the location of the neighbor matching

the operator kernel element Γx̃. To convert between local rotations at x and x̃, we need

to multiply Xϑ(x̃)(x̃) with a rotation conversion factor e−i(k(x)−k(x̃))·x̃, which needs to

be stored alongside the values of Xϑ(x)(x).

5.3.2 Algorithm description

When considering the evolution of the complex amplitudes in a system where the basis

vectors for the amplitudes vary with location, one must take into account differences in

rotation when applying the dynamic equations.

Since all the fields needed in intermediate steps of the calculation are rotationally

covariant, this does not pose a problem apart from an additional multiplication step

and the necessity of maintaining the rotational constants stored in the computational

nodes.

The calculation works in the same way as if all neighbor nodes of the current calcu-
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lation node were temporarily converted in the same rotated system as the central node.

When all basis vectors are the same, the normal evolution Eq. (5.7) can be applied.

Algorithm 1 Top level algorithm for evolution of complex amplitudes.
loop

if step mod adaptation = 0 then
Do mesh refinement
Calculate local rotation
Calculate rotation conversion factors

end if
Perform evolution iteration

end loop

Algorithm 2 Local rotation adjustment. Parameters p, q, Aminamp. and ϑmax.phase are
heuristic.

for each computation node do
Find optimal rotation ϑopt:
if |Aϑ

j | > Amin amp. then
In solidified regions: from gradient
for all j ∈ {1, 2, 3} do

δkj(ϑcurrent) = ℜ
(︁∇A

ϑcurrent
j

iA
ϑcurrent
j

)︁
ϑx,j = 1 + kj(ϑcurrent) · δkj

ϑy,j = (kj(ϑcurrent)× δkj) · êz
end for
ϑopt = ϑcurrent + atan2(

∑︁
j ϑy,j/3,

∑︁
j ϑx,j/3)

else
In liquid regions: drop towards zero
ϑopt = 0

end if
Smooth the changes
ϑnew = p× ϑcurrent + q × ϑopt
Prevent skipping beats
dϑ = max{all neighbours NN} |ϑNN − ϑnew| modulo 2π
kϑ = dx dϑ/ϑmax. phase
if kϑ > 1 then

ϑnew = ϑcurrent + (ϑnew − ϑcurrent)/kϑ
end if
ϑcurrent = ϑnew

end for
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Averaging over nodes, either when calculating ghost node values or when calculating

values on the newly created nodes during mesh adaptation is carried out using Eq.

(5.20). As changes in a local rotation affect the averaging of the fields, a small change

in a local rotation is an additional criterion for mesh coarsening. The mesh adaptation

algorithm therefore coarsens the mesh only where the change in a local rotation and all

fields are sufficiently small.

The local rotation is calculated from the gradient of the complex amplitudes, and

gradients change rapidly on the solid liquid interface and in the vicinity of dislocations.

To prevent large changes in a local rotation, which could result in skipped beats, an

additional averaging step to remove high frequency changes is performed before the

rotation angle update. The pseudocode of the implementation is shown in algorithms 1

and 2.

Since the new model employs local orientations of the basis vectors, and the original

model is rotationally covariant, the properties of both models are equivalent under the

assumptions of the complex amplitudes model given with Eq. (5.7).

An explicit iteration scheme was used in the implementation. Each complex am-

plitude is evolved using Eq. (5.7) on an adaptive grid. In all the calculations pre-

sented in this work, the parameters were set to match those used by Athreya in [9];

i.e. r = −0.25, ψ = 0.285 with time step set to ∆t = 0.04 and minimal grid spacing

δxmin = π/2. In grid adaptation, the change of amplitudes over one node is limited by

|Aϑ,⌜
j − Aϑ,⌝

j | + |Aϑ,⌝
j − Aϑ,⌟

j | + |Aϑ,⌟
j − Aϑ,⌞

j | + |Aϑ,⌞
j − Aϑ,⌜

j | < AdaptThreshold = 0.02

for each j, where the notation ⌜ in Aϑ,⌜
j denotes the top left neighbor of the node. The

maximal change is further limited by an additional criterion that the maximal change

in a local rotation over one node must not exceed max∆ϑ = π/16.

An AMR Solver was used in all the simulations, based on the work of Greenwood.

The solver’s implementation is described in [9, 29, 71].

5.4 Results

Figure 5.2 shows evolution of the microstructure represented by the average amplitude

field (
∑︁

j |Aj |/3), of an example problem in which 12 seeds with an initial radius of 8π

and orientation angles in the range [0, π/12) were placed inside a square domain of size

256π with a periodic boundary condition. The example problem was chosen to match
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the example configuration employed by Athreya et al. in [9] as closely as possible to

allow the reader to make an easy comparison. Note that the grain rotations are different

and thus the number of dislocations on different grain boundaries is not the same as in

[9]. A visible example is the grain boundary on the bottom right part of the simulation

domain where in our simulations dislocations do not appear due to a small difference

in the rotations of the impinging grains.

By introducing a local rotation field in combination with exploitation of the ro-

tational covariance of all steps in the calculation, we were able to solve the complex

amplitudes equations on an adaptive grid, with coarsening in all grains, regardless of

their orientation. This ensures the computational resources spent on calculations scale

with the grain surface in the same manner as achieved by Athreya et al. [9]. In compar-

ison, our approach does not require different representations of the complex amplitudes

in different regions of the computational domain, which eliminates difficulties that could

arise from application of two different evolution equations in separate regions of the sim-

ulation domain. However, compared to the basic APFC model described by Goldenfeld

et al. [7, 8] this model requires additional multiplications and memory for the storage

and application of the rotation factors.

The evolution of the microstructure shown in Fig. 5.2 shows the results obtained

with the new algorithm closely match the results obtained with the previous approach.

The positions of the dislocations and the resulting microstructure overall are the same,

while the grid remains dense only on the solid-liquid interface and around the disloca-

tions, where the field values change more rapidly.

A better insight into the new model’s properties can be obtained by analyzing the

results displayed in Fig. 5.3 where the impingement of two grains was simulated. The

left grain is rotated by π/12 and therefore exhibits the amplitude beats in all amplitudes,

whereas the right grain is aligned with the choice of basis vectors and shows no beats.

This may be seen in the image (c) on the third row where the phase of the first complex

amplitude Φ(A1) is shown, indicating beats in the left grain and no beats in the right

grain. The newly introduced locally-rotated complex amplitude Aϑ
1 is shown on the

second row (b) of the image, where we can see that no beats are exhibited in the

interior of either grain, where the new algorithm is able to align the orientation of

the basis vectors with the rotated grain on the left and remove all the beats. It can

be observed that when using a local rotation the mesh coarsens inside both grains,

regardless of their orientation, and remains dense on the boundary between the grains.
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Figure 5.2: Microstructure evolution in time. Comparison of the AMR model with
and without local rotation. When using a local rotation, the mesh coarsens in all seeds,
regardless of their orientation, and remains dense on grain boundaries where dislocations
are formed. Images show the average amplitude field (

∑︁
j |Aj |/3) at different times.

In order to more clearly demonstrate how our model behaves, we simulated the

growth of 12 grains placed in an undercooled melt in different locations. As may be
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Figure 5.3: Beats and mesh refinement in rotated and non-rotated grains. The grains
are rotated by θ = π/12 and 0. From top to bottom the image shows (a) the average
absolute amplitude (

∑︁
j |Aj |/3), (b) the real part of locally-rotated complex amplitude

(ℜ(Aϑ
1 )), (c) the phase angle of the complex amplitude A1 (Φ(A1)), (d) local mesh

refinement (δx), (e) reconstructed atomic density function (ψ) and (f) the fields δx,∑︁
j |Aj |/3 in cross-section.

seen in Fig. 5.4, the results obtained using the new model are in excellent agreement with

the results obtained without local rotation and with results obtained on a regular grid.

The comparison shows that the new model successfully reproduces the microstructure

with grid coarsening in all grains. Figure 5.4 shows a snapshot of the microstructure’s

evolution at t = 360. Results obtained with different models are placed in consecutive

columns of Fig. 5.4: the first column shows the APFC model on a uniform grid, the

second column the APFC model on an adaptive grid, while the third column shows the

new model. Images in the rows display the following fields: (a-c) reconstructed atomic

51



52 CHAPTER 5. ADAPTIVE MESH REFINEMENT IN APFC MODEL

Figure 5.4: Comparison of simulation results with different models at t = 360. All
columns show PFC model with Complex Amplitudes extension. The first column shows
results when using a regular grid, the second column shows results when using Adap-
tive Mesh Refinement techniques and the third column shows results when using local
rotation with the help of an auxiliary rotation field. From top to bottom: reconstructed
atomic density field ψ, mesh density δx, average amplitude

∑︁
j |Aj |/3, real part of the

first complex amplitude ℜ(A1) and local grain rotation in degrees θ are shown.
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density field ψ, (d-f) mesh density δx, (g-i) average amplitude
∑︁

j |Aj |/3, (j-l) real part

of the first complex amplitude ℜ(A1) and (m-o) local grain rotation θ in degrees. The

reconstructed atomic density field ψ shown in the first row (a-c) is virtually the same

in all models used. In the images showing mesh density δx in the second row (d-f) we

can see that when applying AMR techniques to the APFC model the mesh coarsens

only in liquid regions and non-rotated grains, whereas when using our new approach the

mesh coarsens in all grains, and dense mesh remains only around the dislocations and

at the solid-liquid interface. Average amplitude
∑︁

j |Aj |/3 presented in the third row

(g-i) shows the same grain growth and locations of dislocations are obtained with all

three models. The fourth row presents the real component of the first complex amplitude

ℜ(A1) in the columns corresponding to APFC models without a local rotation (j-k). We

can observe the beats occurring in rotated grains that prevent the mesh from coarsening.

As our model uses a locally-rotated complex amplitude field Aϑ
j instead of Aj , the real

part of this field is shown in the last column (l). We can see that the local rotation

eliminates beats in all grains and enables efficient mesh coarsening. The last row shows

local grain rotation. Images corresponding to APFC models (m-n) show a local rotation

field obtained in post-processing, which is not used during calculations and is displayed

here only for comparison. The final image in the last row (o) shows the local rotation

field θ as used during the calculations in our model. We can observe that the density of

dislocations on the boundary between grains corresponds to the difference in the rotation

of the grains. When rotations of two grains differ only slightly, no dislocations form on

the boundary. In the bottom left part of the simulation domain we placed two seeds

with the same orientation, but shifted the lattice of one seed by approximately half of

the lattice spacing with regard to the second seed. On the boundary between these two

grains we can therefore find no dislocations since the orientation is the same. However,

because the atomic lattice is shifted in one grain with regard to the other, the mesh still

does not coarsen completely as some elastic deformations remain in the atomic lattice

and variations in amplitudes due to the elastic deformations requiring higher mesh

refinement. We can also observe that shifting the atomic lattice changes the phase of

both locally rotated amplitudes Aϑ
j and Aj . As the phase changes continuously, no

defects appear on this boundary.

Selected fields in the cross section of the same simulation are shown in Fig. 5.5,

where the changes in local rotation field θ across the grain boundaries can be better

tracked. Rapid changes can be observed where the cross-section cut approaches the

dislocation (x ≈ 200) and the local rotation rapidly switches between rotations of both
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interfacing grains. A more gradual change in local rotation is observed on the interfaces

between grains which differ in rotation by a smaller amount (x ≈ 480 and x ≈ 650),

where the cut line does not pass directly through a dislocation. We can see that the

mesh is refined only on the grain boundaries and remains refined even on the boundary

between grains which vary only slightly in their orientations and dislocations do not

appear (x ≈ 480). This is needed due to the elastic deformations that appear there to

accommodate the deformation of the crystal lattice.

Figure 5.5: Selected variables in excerpt and cross section at t = 560. From top to
bottom: (a) absolute value of the first complex amplitude |A1|, (b) local mesh refinement
δx, (c) reconstructed density field ψ and (d) local rotation θ. Values of θ, |A1| and∑︁

j |Aj |/3 in cross section on the marked line at y = 183π/2 ≈ 287 are shown in the
last image (e). The local rotation field correctly tracks the grain rotation and shows
large changes only on the grain boundaries.

A comparison with the results obtained on a regular grid is shown in Fig. 5.6 where
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the field |A1| is shown in cross section. The results are compared at two different times,

in the top row (a-b) at t = 160 where the seeds are still growing into the undercooled

melt, and in the bottom row (c-d) at t = 560 when the entire simulation domain has

already solidified. The comparison is made between the exact values obtained on the

computational nodes of the adaptive mesh that lie exactly on the cross section cut

line, interpolated values from the adaptive mesh and results obtained on the uniform

grid. All results are in excellent agreement, with small differences observed only at the

solid-liquid interface and grain boundaries.

Figure 5.6: Amplitude |A1| in cross section cut along the lines x = 201π ≈ 631 and
y = 203π ≈ 638 at times t = 160 and t = 560. Results obtained with AMR using a local
rotation on an adaptive grid match the results obtained with simulations on a uniform
grid. Exact values at the intersected computation nodes of the adaptive grid are shown
in combination with interpolated values from the same grid in comparison with values
obtained on a uniform grid.
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As expected, the number of computational nodes required in the new approach is

similar to that achieved by Athreya et al. [9] using a hybrid implementation. During

simulation of the solidification, the number of computational nodes grows linearly in

time at first, as the interface of the growing grains becomes larger, which may be seen

in Fig. 5.7. As the mesh coarsening can be achieved in all grains, regardless of their

orientation, the final number of computational nodes is significantly lower than the

number of nodes of a regularly spaced grid of a similar size.

Figure 5.7: Number of computational nodes as a function of time for the summations
shown in Figs. 5.2 and 5.4. After the liquid freezes, the number of nodes stops increas-
ing. When using the scheme with a local rotation, the mesh coarsens in all nodes and
therefore consists of a much smaller total number of nodes.

In order to further verify that the introduction of a local rotation field does not

introduce additional errors into the calculation when local rotation is not correctly

determined, we ran two simulations of an example with three seeds in an undercooled

melt, shown in Fig. 5.8. One of the seeds was rotated by 2.5◦, and the other two by

7.5◦. The atomic lattices of two seeds with the same rotation were mutually shifted by

half of the lattice spacing, resulting in an area with pure elastic deformation without

rotation (at x ≈ 280 in Fig. 5.8). In the first simulation run we let our algorithm

determine the best local rotation field, and in the second run we set the local rotation

field to a chosen, time independent function Θ(x) = Θ(x). We chose to use a regular

grid for this simulation, as this eliminates numerical errors originating from AMR and

allows for a better understanding of errors originating from imprecisions in determining

the local rotation. The simulations shown in Fig. 5.8 show that the microstructure

obtained in both simulation runs is virtually the same, with minor differences only
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around dislocation cores. The first row of the image (a) shows the microstructure

obtained when our algorithm determines the local rotation and the second row (b) shows

the case where we fix the local rotation to a time independent function Θ(x). The third

row (c) shows local rotation as determined by our algorithm. Possible performance

of our algorithm is limited by the amount of deformation that remains in the rotated

amplitudes Aϑ
j after rotation and this remainder ∆ϵ =

√︂∑︁
i,j Ei,j is presented in the

forth row image (d) and in cross section in the bottom row (e) in Fig. 5.8. Local rotation

Θ as determined by our algorithm and the imposed rotation Θ(x) used in our second

simulation run are shown in cross section plots in the last row image (e) as well. E is

defined as

E = R(-ϑ)F− I (5.21)

where ϑ is the rotation determined by our algorithm and F is the deformation gradient

[53], defined as

F = I+∇u = I+
2

3

3∑︂
j=1

kj∇(arg(Aj)) (5.22)

As the deformation gradient can be split into rotation R(ϑ̃) and pure deformation U

by polar decomposition as F = R(ϑ̃)U, the parameter ∆ϵ vanishes when our algorithm

can determine the correct local rotation (ϑ = ϑ̃) and there is no pure deformation

(U = I). In the last row in the Fig. 5.8 we can see that the local rotation removes

almost the entire deformation in the interior of grains with ∆ϵ quickly dropping below

0.05. Around dislocations and on the grain boundaries a significant portion of the

deformation remains, but this does not result in increased errors in the calculations.

The comparison between images in the first and second rows in Fig. 5.8 shows that

the microstructure remains the same even if we use incorrect local rotation in large

areas of the computational domain. This is a consequence of rotational covariance of

evolution equations, and due to this property the calculations are independent of the

actual rotation used. Additional errors are not introduced due to possible inaccurracies

in the calculation of a local rotation field. The new method is best understood as an

exploit of the rotational covariance of the evolution equations that locally transforms

the equations to a set of rotated amplitudes Aϑ
j , defined on a set of basis vectors aligned

with the local grain. This removes fast variations of the real and imaginary part of the

complex amplitudes in misaligned grains that originate from rotation of the grain. With

only slow variations in complex amplitudes remaining, the AMR can be effectively used

in the entire simulation domain using only the Cartesian representation.
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Therefore the idea of a local rotation should not be understood as a way to approx-

imate values of the complex amplitudes and does not require additional assumptions to

work. Just as AMR can be applied to a basic complex amplitudes model, the new model

can be used in cases where large deformations are expected. When rotated grains are

simulated with basic complex amplitudes models, the use of AMR is ineffective as the

high spatial variations of amplitudes require high mesh refinement, but does not pro-

duce inaccurate results. The computational mesh refines and computational efficiency

is lost, but not the accuracy. When areas with large deformations are encountered in

our new model, the local rotation cannot eliminate the variations in the Cartesian rep-

resentation of the complex amplitudes and the mesh refines. This results in the same

accuracy as we would achieve without local rotation, with some loss in the computation

speed.

Besides enabling the coarsening of the computational mesh in all grains using only

the Cartesian representation of the amplitude equations, the new model helps to resolve

another pressing issue of modeling with complex amplitude equations. With some

aditional improvements, to be reported in detail elsewhere, we were able to eliminate an

unphysical grain boundary that appears when the misfit between the impinging grains

approaches the crystal’s symmetry rotation (60◦ in our case). As reported by Spatschek

and Karma [10], the amplitude equations formalism is unable to properly model grain

boundaries where interfacing grain rotations differ by more than half of the angle of the

crystal symmetry rotation. Our initial simulations indicate that improvements resulting

in the use of a local rotation field could also lead to better modeling of grain boundaries

for a whole range of misorientations.

5.5 Conclusions

A new model is presented for solving complex amplitude equations on an adaptive mesh,

which solves the problem of beats in misaligned grains and allows for mesh coarsening

in all grains. It is based on the observation that the beats disappear when the basis

vectors for the amplitudes are correctly rotated. The proper rotation of the basis vectors

was derived from the complex amplitudes and stored in an auxiliary variable used in

calculations. The rotational covariance of the operators used in the evolution of the

complex amplitudes allowed us to separate the conversion between differently rotated

fields from the evolution equations. The results obtained using the new approach closely
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match the results obtained with existing models.

The new model’s computational efficiency scales in the same way as the hybrid

approach described by Athreya et al. in [9]. The model does not require a presump-

tion of a frozen phase gradient inside the solidified grains and uses only the Cartesian

representation of the fields in the entire computational domain.

The model shows promise with regard to modeling grains of a larger rotation range.

With some improvements to the model, the unphysical grain boundary between grains

which differ in rotation by a multiple of the crystal’s symmetry rotation can be removed.

We confirmed that the model is resilient to inaccuracies in the calculation of a local

rotation angle, and does not introduce errors into calculations even in areas where large

strains exist. This is an expected consequence of the main idea of the new model: it

is an exploit of the rotational covariance of the evolution equations, aimed at enabling

AMR mesh coarsening in all grains.
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Figure 5.8: Accuracy of the simulations under conditions where local rotation might
be incorrectly calculated or where large deformations exist. (a) microstructure of a
simulation run where our algorithm determined local rotation. (b) microstructure of a
simulation run where local rotation was fixed to a chosen function Θ(x) = Θ(x). The
microstructure in both simulation runs matches closely, with minor differences observed
only around dislocations. (c) local rotation field Θ as determined by our algorithm.
(d) deformation remainder ∆ϵ, shown in logarithmic scale. (e) local rotation Θ as
determined by our algorithm, the chosen function Θ(x) and deformation remainder ∆ϵ
in cross section. ∆ϵ remains low inside grains, in the area with pure elastic deformation
at x ≈ 280 shows a small increase coupled with some inaccuracy in the calculation of a
local rotation field Θ and rapidly increases in the vicinity of the dislocation at x ≈ 120.



Chapter 6

Unphysical Grain Boundary in
APFC model

This chapter introduces improvements to the amplitude expansion of the phase field

crystal model (APFC) that enable the simulation of grains within a full range of orien-

tations. The unphysical grain boundary between grains, rotated by a crystal’s symme-

try rotation, is removed using a combination of the auxiliary rotation field described in

chapter 5 and an algorithm that correctly matches the complex amplitudes according

to the differences in local rotation Copyright of this chapter is held by c⃝ American

Physical Society 1.

6.1 Introduction

The microstructure plays a crucial role in determining the properties of many modern

industrially important materials. Since experiments are expensive and the relationships

between chemical composition, thermo mechanical processing, and the final microstruc-

ture are complex, computer simulations are an important step in the design of new

materials. In order to be able to competitively price the final product, material produc-

tion usually occurs in large batches of material. Computer simulations able to efficiently

model processes occurring on such a large span of spatial and temporal scales are scarce,

and frequently include a hierarchy of different models for modeling processes on different

scales that exchange parameters. Discontinuous transitions between the different scales

1Copyright (2019) by the c⃝ American Physical Society.
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sometimes introduce nonphysical phenomena that are hard to eliminate, therefore mak-

ing use of a single model preferable. In order to enable modeling of the microstructure

on diffusive time scales, the phase-field-crystal model (PFC) was developed [5, 6]. A re-

cently developed amplitude expansion of the PFC model (APFC) [7, 8] can predict the

microstructure of materials in relatively large simulation domains, and in combination

with effective mesh refinement techniques (AMR) [9, 62] can span many different scales

in a continuous manner.

The PFC and APFC models were successfully applied to the study of many different

phenomena such as ferromagnetic [24] and ferroelectric [25] effects, the effects of hydro-

dynamic velocity on the microstructure formation [54], the study of grain boundary mo-

tion and polycrystalline films [7, 8, 38], structural phase transitions [14, 15, 48] and grain

boundary energies [51, 55]. The models were improved to cover a wide range of possible

materials, including materials with different crystal lattices [12, 16, 17, 46, 48, 49, 51, 52]

in 2D and 3D, materials with spatial anisotropy [21], liquid crystals [22, 23], binary sys-

tems [10, 49, 50] and multi-component alloys [18], improved to achieve instantaneous

mechanical equilibrium [53] and tune the energy of defects and interfaces [55].

In our recent work [62], we presented a new way to achieve adaptive mesh refinement

in APFC models using an auxiliary local rotation field. The local rotation field was

derived from the fields used in the computation, but was itself never used in calculations.

It was used only to convert the amplitude equations in a system, aligned with the local

grain, where the so-called beats in the amplitudes disappeared and AMR algorithm was

able to coarsen the mesh.

In this work we show how the local rotation field can be used to eliminate an

unphysical grain boundary described by Spatschek et al. [10], occurring between grains

rotated by a crystal’s symmetry rotation, and enable APFC simulations with a whole

range of grain orientations. This can enable APFC simulations of industrially important

thermo-mechanical processes where grain rotation occurs, such as the hot and cold

forming of metallic materials.

6.2 APFC model

The PFC model operates on a local atomic density function ψ which minimizes the free

energy functional [5, 6, 51, 53] given here in terms of dimensionless field ψ tracking the
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deviations of the atomic density field from its average

F =

∫︂
dr

{︃
∆B

2
ψ2 +Bxψ

2
(1 +∇2)2ψ − t

3
ψ3 +

v

4
ψ4

}︃
(6.1)

where ∆B = Bl−Bx. Parameter Bl is related to the compressibility of the liquid state

and Bx to the elastic moduli of the crystalline state. The choice of t and v determines

the magnitude of the amplitudes and the liquid-solid miscibility gap. The single-mode

solution of the PFC equation in the solid phase has triangular symmetry within a certain

range of parameters and the solution can be approximated as [7–9]

ψ ≈
3∑︂

j=1

Aje
ikj·x +

3∑︂
j=1

A∗
je

−ikj·x (6.2)

where Aj are the complex amplitudes of waves aligned with the wave vectors

k1 = k0(−i
√
3/2− j/2),

k2 = k0j,

k3 = k0(i
√
3/2− j/2), (6.3)

In order to be able to compare our results with already published results, we used the

same free energy functional and dynamic equations for our APFC model as in Hirvonen

et al. [51]. The free energy and the dynamic equations are

F = cA
∫︁
dr{(∆B/2)A2 + (3v/4)A4 − 2t(

∏︁3
j=1Aj + c.c.)

+
∑︁3

j=1(B
x|LjAj |2 − (3v/2)|Aj |4)} (6.4)

∂Aj

∂t
= −[∆B +BxL2

j + 3v(A2 − |Aj |2)]Aj + 2t
∏︂
k ̸=j

A∗
k (6.5)

where Lj = ∇2 + 2kj · ∇ and A2 = 2
∑︁3

j=1 |Aj |2. The dynamic equations are derived

using non-conserved, dissipative dynamics. We chose the same set of parameters as

Hirvonen et al. [51] (Bl = 1, Bx = 0.98, t = −1/2, v = 1/3, cA = 7.95eV , a0 = 2.46Å).

Solving the dynamic equations (6.5) in Cartesian representation has two main draw-

backs. First, the grains’ rotation is expressed by the so-called beats in the complex

amplitudes and therefore the AMR techniques are ineffective. The beats prevent the
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mesh from refining in all grains that are not aligned with the initial choice of basis

vectors [9]. Second, the grain boundaries between grains that differ in orientation by

more than half of the crystal’s symmetry rotation (30◦ in our case) show the effects of

an unphysical grain boundary [10] that is formed between grains that differ in rotations

by the crystal’s symmetry rotation. Both of these shortcomings prevent APFC simu-

lations with grains in a full range of misorientations on larger simulation domains. In

order to overcome these limitations, we improved a model employing a local rotation

field described in our previous work [62].

6.3 Description of improvements to the model

Our model introduces a set of locally-rotated complex amplitudes [62] Aϑ
j

Aj = Aϑ
j e

iδkj(ϑ)·x (6.6)

where ϑ is a local rotation field and kj(ϑ) = kj + δkj(ϑ) are rotated basis vectors. The

local rotation field ϑ is incrementally derived from the complex amplitudes Aj based

on the observation that, when the rotation of the basis vectors matches the rotation

of the local grain, the beats disappear and therefore the gradient of the locally rotated

amplitudes is zero:

∇Aϑ
j = (∇Aj)e

−iδkj ·x +Aj(−iδkj)e
−iδkj ·x = 0 (6.7)

We incrementally update the local rotation field using

δkj(ϑ) =
∇Aj

iAj
= kj(ϑ)− kj (6.8)

where we average the rotation angle derived from (6.8) over all complex amplitudes.

Due to the rotational covariance of the operator Lj , the conversion between the basis

vectors rotated by a different amount can be separated from the operator evaluation

and the adaptive mesh can coarsen in all grains, regardless of the orientation. To apply

an operator Lj on a locally rotated field X ∈ {Aϑ
j , L

ϑ
jA

ϑ
j }, the local rotation is treated

separately as in [62]

Lϑ
jX

ϑ
j = e−iδk·xLjXj (6.9)
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In the current work, we present a new way to eliminate the unphysical grain boundary

between grains rotated by a crystal’s symmetry rotation, using a local rotation field in

combination with an algorithm that uses the local rotation field to correctly match the

complex amplitudes in neighboring computational nodes. The algorithm is based on

an observation that the approximation of the single-mode solution (6.2) is the sum of

planar waves directed at angles that are multiples of the crystal’s symmetry rotation.

Table 6.1 lists the wave vectors, the angles they form with the first wave vector k1,

the complex amplitudes Aj matching the selected wave vector, and the wave vectors

we obtain with one crystal’s symmetry rotation (±60◦). Our algorithm finds the best

matching complex amplitudes in neighboring computational nodes by comparing the

local rotation of both nodes. If the local rotation ϑ differs by more than half of the

crystal’s symmetry rotation (|ϑL − ϑR| > 30◦), the algorithm matches the complex

amplitude A1 in one computational node with A∗
2 or A∗

3 in the other computational

node, depending on the sign of the difference. A full list of matching amplitudes is

presented in Table 6.1. In Fig. 6.1, the wave vectors in two neighboring computational

nodes with different local rotations are shown. The algorithm used is the same as

in [62], with the following two additions. First, when an operator is evaluated on a

locally rotated field, the matching amplitudes from neighboring nodes are used. In case

the differences in local rotations between nodes are greater than half of the crystal’s

symmetry rotation, the matching algorithm uses Table 6.1 to find appropriate matching

amplitudes. Second, after the optimal local rotation is found in all solidified regions,

the found local rotation is propagated to the neighboring nodes in liquid regions, and

the propagation step is repeated 10 times.

Table 6.1: A list of wave vectors, their rotation and corresponding amplitudes. The
matching amplitudes when the rotation is shifted by one crystal’s symmetry rotation in
either direction are shown in the table’s last two columns.

Direction Rotation Amp. Amp. (+60◦) Amp. (−60◦)

+k1 0 A1 A∗
2 A∗

3

−k2 60 A∗
2 A3 A1

+k3 120 A3 A∗
1 A∗

2

−k1 180 A∗
1 A2 A3

+k2 240 A2 A∗
3 A∗

1

−k3 300 A∗
3 A1 A2
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−k1 , A∗
1

−k2 , A∗
2

−k3 , A∗
3

k1 , A1

k2 , A2

k3 , A3

ϑ = 55◦

k1 , A1

k2 , A2

k3 , A3

−k1 , A∗
1

−k2 , A∗
2

−k3 , A∗
3

ϑ = 0◦

Figure 6.1: Wave vectors in two neighboring computational nodes with different local
rotations (left: ϑ = 0◦, right: ϑ = 55◦). Our algorithm matches the complex amplitudes
that correspond to the wave vectors that point in the closest directions. A2 in the left
computational node is therefore matched with the complex amplitude A∗

1 in the right
computational node, as the angle between the corresponding wave vectors is only 5◦.

The first improvement eliminates the unphysical grain boundary occurring between

grains that differ in orientations by more than half of the crystal’s symmetry rotation.

The second improvement ensures that our limit on the change in local rotation at each

time step does not prevent boundaries with a mismatch close to the crystal’s symmetry

rotation from forming. Without this step, the algorithm smoothens a grain boundary

between grains with misorientations of 0◦ and 55◦ and creates a region in which the local

rotation continuously transitions between angles in the solid regions, which prevents the

first improvement from finding the correct matching amplitudes on the interface.

6.4 Results

Figure 6.2 shows a grain boundary at a 50.1◦ tilt angle. Without amplitude matching,

the result is a grain boundary that would correspond to an effective tilt angle of 50.1◦,

which is impossible as the crystal’s symmetry rotation of 60◦ limits the effective tilt

angles to 30◦. With the amplitude matching algorithm, the amplitudes on both sides of

the grain boundary that correspond to wave vectors pointing in the most similar direc-

tions are properly matched and the result is a grain boundary with a similar structure
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Algorithm 3 Local rotation adjustment. Parameters p, q, Amin. amp. and ϑmax. phase
are heuristic.

for each computation node do
Find optimal rotation ϑopt:
if |Aϑ

j | > Amin amp. then
In solidified regions: from gradient
for all j ∈ {1, 2, 3} do

δkj(ϑcurrent) = Re
(︁∇A

ϑcurrent
j

iA
ϑcurrent
j

)︁
ϑx,j = 1 + kj(ϑcurrent) · δkj

ϑy,j = (kj(ϑcurrent)× δkj) · êz
end for
ϑopt = ϑcurrent + atan2(

∑︁
j ϑy,j/3,

∑︁
j ϑx,j/3)

else
In liquid regions: drop towards zero
ϑopt = 0

end if
Smooth the changes
ϑnew = p× ϑcurrent + q × ϑopt
Prevent skipping beats
dϑ = max{all neighbours NN} |ϑNN − ϑnew| modulo 60◦

kϑ = dx dϑ/ϑmax. phase
if kϑ > 1 then

ϑnew = ϑcurrent + (ϑnew − ϑcurrent)/kϑ
end if
ϑcurrent = ϑnew

end for
for 10× propagate local rotation into liquid regions do

for each computation node do
if |Aϑ

j | > Amin. amp. then
mark node as “rotation is set”

else if this node has a marked NN then
ϑcurrent = average ϑ over all marked NN
mark node as “rotation is set”

end if
end for

end for

to a 10◦ = 60◦ − 50◦ grain boundary, as expected.

We calculated the grain boundary energies with our improved algorithm and com-

pared them with results published by Hirvonen et al. [51]. Our improvements result in
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Figure 6.2: Free energy on the grain boundary in armchair configuration at a mismatch
angle of 50.1◦. The top row: (a) shows an unphysical grain boundary that is formed
between grains at mismatch angles larger than half of the crystal’s symmetry rotation
[10]. Middle row: (b) shows the same grain boundary as formed in simulations with our
improved algorithm that correctly matches complex amplitudes at different rotations,
and therefore the unphysical effects do not occur. Bottom row: (c) shows the local
rotation as used in our improved algorithm.



6.4. RESULTS 69

Figure 6.3: The grain boundary energy as a function of tilt angle. Values for models
PFC1, PFC3, XPFC, APFC(AC) and APFC(ZZ) were published by Hirvonen et al. [51]
and are in good agreement with our model. Our model without amplitude matching
in armchair (AC) and zigzag (ZZ) configurations matches previously published results.
Amplitude matching in either configuration successfully removes the unphysical increase
in grain boundary energy observed when the tilt angle is more than half of the crystal’s
symmetry rotation away from a configuration in which complex amplitudes from both
impinging grains are completely aligned.
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the removal of the unphysical effects from improper matching of complex amplitudes on

different sides of the grain boundary. In Fig. 6.3, we show the calculated grain bound-

ary energies in comparison to [51]. In our calculations, we used two different ways of

constructing a grain boundary, like [51] we constructed a grain boundary in armchair

configuration using two grains that form a vertically oriented grain boundary and used

a horizontal grain boundary for the zigzag configuration. The results of calculations

obtained without the amplitude-matching algorithm agree well with previous results,

and the small differences can be explained by numerical errors introduced by the use

of the adaptive mesh refinement techniques and differences in construction of the grain

boundaries. Results obtained with our amplitude-matching algorithm show a continuous

transition between the results obtained with APFC(AC) and APFC(ZZ) configurations

at an appropriate angle, confirming the successful removal of the unphysical effects on

the grain boundaries.

The grain boundaries were constructed by seeding the simulation domain with a

crystal phase upon two opposite rotations, as seen in Fig. 6.4. The rotation was chosen

in such a way that the atomic density on the line between the domains with different

orientations is exactly periodical. Before the start of the simulations, we melted the

crystal phase in a small area around the grain boundary line. To calculate the grain

boundary energy, we averaged the free energy density in the marked area in Fig. 6.4.

The area matches the period of the initial atomic density in y direction and extends into

pure, undeformed crystal in x direction. We used sufficiently large simulation domains

(L = 512π/2) to ensure that the center-most area remains periodic in the direction

along the grain boundary and the crystal is undeformed at both ends of the marked

area. Due to these properties of the area over which we averaged the free energy density,

the grain boundary energy can be calculated as

γ = ∆F/∆y (6.10)

where ∆F = F□ −Fcrystal,□ is the increase in free energy in the marked area and ∆y is

the grain boundary length (in the horizontal grain boundary configuration the axes are

switched appropriately).

The effects of our improvements in an example of a simulation with many grains are

presented in Fig. 6.5. 12 seeds with rotations in a full rotation range (θ ∈ [−30◦,+30◦))

were grown in undercooled melt using the algorithm presented in this article and com-

pared to our previous work [62]. We can see that the improvements remove unphysically
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Figure 6.4: Grain boundary construction and calculation of free energy. In order to
calculate the free energy of a symmetric tilt grain boundary, we simulate two impinging
grains, each rotated by an angle at which the microstructure in the middle of the grains
repeats periodically, presuming an infinite simulation domain. We calculate the free
energy per grain boundary length from the average free energy in the marked regions.
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Figure 6.5: Grain boundary energies in an example simulation. 12 seeds with rotations
in a full rotation range (θ ∈ (−30◦,+30◦)) were placed in undercooled melt. The images
in the top row show free energy density in the full simulation domain, as calculated: (a)
with the algorithm published in [62], and (b) the algorithm presented here. We can see
that our improved algorithm removes the unphysical effects on grain boundaries. The
images in the bottom row show: (c) the local rotation field; and (d) the reconstructed
microstructure.
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high grain boundary energies on the grain boundaries where the impinging grains are

at a tilt angle above 30◦. Presuming a completely uniform distribution of grain orienta-

tions, this results in the removal of the unphysical effects on half of the grain boundaries.

6.5 Conclusions

This article presents a new improvement to the APFC model that removes the unphysi-

cal grain boundary that occurs in the APFC models between grains, rotate by a crystal’s

symmetry rotation. The origin of such an unphysical phenomena is in the dual repre-

sentation of the rotation of the grains, first by the basis vectors and second by the beats

in the complex amplitudes representing the density waved associated with the basis

vectors. Our improvement removes the unphysical grain boundary by connecting both

representations of grain rotation. The local rotation field tracking the grain rotation

expressed by the beats in the complex amplitudes is connected to the rotation of the

basis vectors through an angle to amplitude matching table. The approach eliminates

the unphysical grain boundary in the model and the improved model demonstrates

grain boundary energies matching best APFC models at a given real misfit at the grain

boundary in the whole range of crystal orientations. This enables APFC simulations

of processes where grain rotation occurs or where limiting the rotations of grains to an

interval of values can not be justified.

6.6 Appendix A: Selected simulations in comparison

This section presents a selected set of simulations, useful for understanding the bene-

fits and limitations of the presented improvements. All images show the local free energy

density at the grain boundary on an adaptive mesh, in three different model/configuration

combinations.

While the APFC model can not provide an accurate description of atomic structures

around dislocations, it gives good approximations of the PFC model for small tilts and

deformations [43], and has already been used to investigate grain boundaries. The

dislocation density on the grain boundary determines the grain boundary free energy to

a large extent, and the dislocation cores can be observed in plots of free energy density.

Therefore we chose to present the grain boundaries in comparison in terms of free energy

density plots. We present free energies obtained without amplitude matching algorithm
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in two configurations, armchair in the top row of the figures and zigzag in the bottom

row. Plots of the zigzag configurations are transposed, as swapping x and y axes makes

them easier to compare with other plots. In the middle row we present the results

obtained with our improved model, which match the results obtained with the previous

model in armchair configuration at small mismatch angles and those obtained in zigzag

configuration for large mismatch angles, that is in mismatch ranges where the previous

models derive correct free energy densities in a given configuration. In the middle of

the range of misorientations (25◦ < θ < 35◦) we can observe a gradual transition of the

microstructure obtained with our improved model between both correct limits. While

there are some transient effects and the exact structure of dislocations does not match

at all angles, the density of dislocations which determines the grain boundary properties

matches the appropriate configuration (armchair for low mismatches, zigzag for large

mismatches) of the previous models.

Note that in the images presenting grain boundaries with 0◦ or 60◦ mismatch, the

adaptive mesh coarsens completely and only very few computational nodes of the adap-

tive mesh are shown. This is an expected and desired result.
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Figure 6.6: Grain boundary structure at 0◦ and 5.09◦ misfits.
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Figure 6.7: Grain boundary structure at 10.15◦ and 14.86◦ misfits.



6.6. APPENDIX A: SELECTED SIMULATIONS IN COMPARISON 77

Figure 6.8: Grain boundary structure at 19.93◦ and 25.04◦ misfits.
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Figure 6.9: Grain boundary structure at 29.84◦ and 34.96◦ misfits.
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Figure 6.10: Grain boundary structure at 39.95◦ and 44.82◦ misfits.
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Figure 6.11: Grain boundary structure at 50.10◦ and 54.91◦ misfits.
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Figure 6.12: Grain boundary structure at 60.00◦ misfit.
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Chapter 7

Dynamic grain rotation in the
APFC model

This chapter introduces improvements to the amplitude expansion of the phase field

crystal model (APFC) that enable simulations of grains rotating in the full range of

possible rotations. A rotating circular grain is simulated, while some effects of the

memory of the material can be observed in the simulation.

7.1 Introduction

The ability to predict the microstructure of material with a given chemical composition

after different thermo mechanical processes is a key steps in the efficient design of

modern materials. Since processes of forming the microstructure occur on length scales

that are measured in microns, whereas the production of the material occurs in large

batches, numerical methods able to consistently span the considerable differences in

length scales are a tool of growing importance in materials modelling.

In past decades, several approaches to scaling different length scales were developed:

the increasingly popular concept of integrated materials engineering (ICME) links mate-

rial models at multiple scales hierarchically [3]. It can be used to connect models based

on molecular dynamics or kinetic Monte Carlo on the atomistic scale with a phase field

(PF) or cellular automata based model on the mesoscopic scale. While this approach

is very useful, the discontinuous transitions between different length scales sometimes

lead to problems that are hard to remove. Another popular approach to scaling the

83



Chapter 7. Dynamic grain rotation in the APFC model

differences in length scales is the phase field method (PF) in combination with adaptive

mesh refinement techniques, which was successfully applied to the study of microstruc-

ture evolution on spatial scales spanning several orders of magnitude [4, 70].

The PF method describes the material through a spatially-continuous order param-

eter corresponding to the phase of the material at various spatial points. As such,

this method is not optimal for studying phenomena where the atomic arrangement is

crucially important as the positions of individual atoms are averaged out. To preserve

the information of the atomic arrangement and enable the study of related phenomena,

the phase-field-crystal (PFC) methodology was introduced [5, 6]. The PFC model can

be derived from classical density-functional theory under some assumptions [11], and is

based on minimization of a free energy functional constructed in such a way that the

ground state is a periodic function of space corresponding to the lattice of the crys-

tal. The PFC method naturally incorporates crystal elasticity and various topological

defects, and since being established has been extended to model multi component ma-

terials, materials with different crystal lattices [12, 14–17], incorporate acoustic waves

[20] and spatial anisotropy [21], and include ferromagnetic [24] and ferroelectric [25]

effects in multi-component materials.

Since the PFC model retains the information about the atomic arrangement through

the calculated atomic density field, the density field variable is unsuitable for the mesh

refinement because it describes a spatially oscillating field. To increase the amount

of material that can be modelled and pave the way for a connection with the PF

methods, the complex-amplitude expansion (APFC) of the PFC method was introduced

by Goldenfeld et al. [7, 8]. Using a renormalization group based approach, it expresses

the atomic density function of the PFC model as a sum of waves aligned with the vectors

of the reciprocal lattice of the crystal. The dynamic equations then express the evolution

of the complex amplitudes associated with the waves, therefore making them better

suited for the application of adaptive mesh refinement techniques [9, 62]. The transition

from the atomic density field to complex amplitudes introduces unphysical phenomena

such as unphysical grain boundaries between grains, rotated by a crystal’s symmetry

rotation [10]. This problem limits the APFC’s applicability model to processes where

grain rotation occurs.

In our current work, we demonstrate improvements to the APFC model that enable

APFC simulations in conditions where grains rotate by a full range of rotation. We

simulate a single circular grain in a matrix, and impose the condition of constant rotation
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speed on the circular grain as a boundary condition. We compare the results obtained

with the improved APFC model with those obtained using a classical PFC model,

and find a good level of agreement between the observed phenomena, indicating the

unphysical effects were successfully removed.

This work is organized as follows. The theoretical description of the PFC and

APFC models used in the present work is outlined. Section 7.3 describes the new

model, algorithm, and features of the chosen numerical approach. Section 7.4 presents

the results of our simulations and, finally, concluding remarks are given in 7.5.

7.2 Models

7.2.1 PFC model

The PFC model is based on the minimization of free energy given by the functional

derived by Elder et al. [5, 6]:

F =

∫︂
dx{ψ[r + (1 +∇2)2]ψ/2 + ψ4/4} (7.1)

here given in dimensionless units where r is the dimensionless temperature proportional

to the temperature difference to a critical temperature Tc. The dynamic equation for

the atomic density field ψ is derived using

∂ρ

∂t
= Γ∇2

(︃
δF
δρ

)︃
(7.2)

and yields
∂ψ

∂t
= ∇2{[r + (1 +∇2)2]ψ + ψ3} (7.3)

The atomic density functions ψ at minimal free energy have different shapes depending

on the parameter r and initial average atomic density. In 2D the solutions form three

different phases [6]: liquid phase where ψ = ψ in the entire area, striped phase and

crystalline phase where the solution forms a crystal lattice with honeycomb symmetry.
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7.2.2 APFC model

The solid phase solution to the PFC equation has honeycomb symmetry and can be

approximated in terms of the complex amplitudes Aj [7–9] as

ψ ≈
3∑︂

j=1

Aje
ikj·x +

3∑︂
j=1

A∗
je

−ikj·x + ψ (7.4)

where kj are the reciprocal lattice vectors of a hexagonal crystal

k1 = k0(−i
√
3/2− j/2),

k2 = k0j,

k3 = k0(i
√
3/2− j/2), (7.5)

and k0 is the wave number. Goldenfeld et al. derived the dynamic equations for the

complex amplitudes [7, 8]:

∂Aj

∂t
= L̃jAj − 3Aj |Aj |2 − 6Aj

∑︂
k:k ̸=j

|Ak|2 − 6ψ
∏︂

k:k ̸=j

A∗
k (7.6)

where k, j ∈ [1, 3],

L̃j = (1−∇2 − 2ikj · ∇)(−r − 3ψ
2 − {∇2 + 2ikj · ∇}2) (7.7)

is a rotationally covariant operator and ψ is the dimensionless average density.

The free energy of the system in terms of the complex amplitudes was derived by

Chan and Goldenfeld [61]

F/kAPFC = −
3∑︂

j=1

A∗
j (−r − 3ψ

2 − {∇2 + 2ikj · ∇}2)Aj

+3

3∑︂
j,l=1

|Aj |2|Al|2 −
3

2

3∑︂
j=1

|Aj |4

+6ψ(A1A2A3 +A∗
1A

∗
2A

∗
3) (7.8)

where kAPFC is a constant we used to fit the grain boundary energies of the APFC

model to those of the PFC model and is normally equal to 1.
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Figure 7.1: The images show the phenomenon of beats in misaligned grains: (a) real
component of the first complex amplitude ℜ(A1); and (b) the reconstructed atomic
density field ψ in three seeds, rotated by (clockwise from bottom left) θ = 0◦, 5◦, and
25◦.

Multiple orientations of the crystal grains can be modelled using only one set of

basis vectors due to the rotational covariance of the operator L̃j .

The rotation of the grains in the complex amplitudes representation is represented

by the so called beats in the complex amplitudes of the grains, not aligned with the

initial choice of the basis vectors [7, 9]. Figure 7.1 shows the phenomenon of beats in

three grains rotated by 0◦, 5◦, and 25◦.

The phenomenon of beats mean that the adaptive mesh refinement (AMR) tech-

niques applied to APFC models are ineffective because in rotated grains the mesh must

be refined in order to properly resolve the considerable variations in the complex am-

plitudes due to the beats. To solve this problem and enable AMR techniques to work

in APFC models, two approaches have emerged.

Athreya et al. [9] combined the Cartesian representation of the complex amplitude

equations with the polar representation in a hybrid formulation and evolved the complex

amplitudes in their polar representation within the rotated grains.

The present authors proposed an approach using an auxiliary local rotation field

variable that tracks the location of the local grain in combination with an exploit of

the rotational covariance of the complex amplitude equations [62]. This approach al-

lowed for the rotation of the local grain to be separated from the complex amplitude
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equations, virtually aligning the basic vectors with the rotation of the local grain at all

computational points.

In addition to enabling AMR techniques to perform well inside rotated grains, the

local rotation field can be exploited to sidestep the problem of an unphysical grain

boundary occurring between grains rotated by a multiple of the crystal’s symmetry

rotation, first described by Spatched et al. [10]. This problem originates in the complex

amplitudes representation of a grain, rotated by a crystal’s symmetry rotation (60◦ for

triangular symmetry) not being the same as the representation of a non-rotated grain,

even though both grains physically represent the same crystal rotation. In order to

overcome this problem, the authors of this contribution proposed to combine the local

rotation field with an amplitude-matching algorithm that correctly matches the complex

amplitudes on both sides of an inter-grain boundary based on the physical directions of

the local grain’s underlying basis vectors in works described in Chapters 5 and 6.

7.3 Numerical methods

To compare the new results with existing models, we matched the parameters of the PFC

and APFC models as closely as possible. The common parameters were ψ = 0.285, r =

−0.25. We simulated the PFC model (eq. (7.3)) using a finite difference computation

scheme with time step dt = 0.001 and spatial discretization dx = kX lPFCπ/4, dy =

lPFCπ/4 Nx = Ny = 512, where the numeric constant (kX = 1.01036) in dx was used to

precisely match the matrix’s periodicity in x direction and lPFC is a constant capturing

the unit cell size of the PFC model compared with the 1-mode solution, obtained with

a minimization method (lPFC = 0.97453).

The APFC model (eq. (7.6)) was solved on an adaptive grid with time step dt = 0.04

and minimal grid spacing dx = π/2 and size L = 256π/2, as described in our previous

work [62] (described in Chapters 5 and 6). The algorithm solves the complex amplitude

equations in the Cartesian representation using an auxiliary local rotation field to align

the basis vectors with the local grain at all calculation points, further additionally

uses the local-rotation information to match the correct complex amplitudes Aj in

neighboring computation nodes, as illustrated in Fig. 7.2.

All simulations were performed using periodic boundary conditions. In dynamic

simulations of a rotating grain, a circular grain was placed inside the matrix, with the

entire simulation domain initialized to a 1-mode solution of the PFC equation at t = 0.
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Figure 7.2: Wave vectors in two neighboring computational nodes with different local
rotations (left: ϑ = 28◦, right: ϑ = −27◦). The algorithm matches the complex
amplitudes in neighboring computation nodes that correspond to wave vectors pointing
in the most similar directions. A1 in the left node is matched with A∗

2 in the right node,
as the angle between these two wave vectors is only 5◦.

The inside of a circular grain was then fixed to this 1-mode solution, when the matrix

outside of the grain was left to relax into the minimal free-energy configuration until

t = 40. After this time, the circular grain was periodically rotated at a specified rotation

speed, while outside of the circular grain normal evolution equations were applied. The

rotating circular grain was treated as a boundary condition and therefore the free energy

inside it was not changed during the simulation run. In static simulations, the setup

was similar with a circular grain of exactly the same radius in the center of the matrix,

rotated by a specified angle at the start of the simulation. To enable the free energies

obtained in simulations to be compared, the free energy inside the grain was fixed in

this case as well. Before the start of the simulation, a small area of the matrix around

the circular grain was melted, and the crystal was left to grow into a free-energy optimal

configuration during the simulation.

As the lattice constant in PFC and APFC models differs by a factor lPFC , the

radiuses of the circular grains in compared simulations were also corrected by this

factor in order to preserve the same configuration of atoms at the boundary between

the imposed atomic configuration of the circular grain and the matrix. In the PFC

model, the optimal atomic configuration differs from the 1-mode solution imposed on
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the boundary of the circular grain, also creating some differences in the results of the

two models. Since the PFC and APFC models give different grain boundary energies,

we used kAPFC in eq. (7.8) to fit the grain boundary energies of the APFC model to the

grain boundary energies of the PFC model. We calculated the grain boundary energies

of a symmetric tilt grain boundary at 3.8902◦ in the same way as described in Chapter 6.

with both models and obtained γPFC,3.8◦ = 0.004819, γAPFC,3.8◦ = 0.006013. Based on

this, we set kAPFC = γPFC,3.8◦/γAPFC,3.8◦ .

7.4 Results

Figure 7.3 shows an example of different structures forming around a circular grain

rotated by 10◦ in the PFC (left column) and APFC (right column) models. The first

row presents the microstructure around a static circular grain. The second row of the

figure presents the microstructure around a dynamically rotating grain (the rotation

period is t0 = 200000) when the grain is rotated by 10◦. The structure differs from

the static configuration because the dynamic rotation meant the grain boundary could

not relax into the lowest energy configuration. The third row in the figure presents the

microstructure from the same simulation as shown in the second row at a time when the

grains are rotated by 70◦. We may observe the structure is different from the structure

observed at a 10◦ rotation, which is due to the history of the sample. Both models

show that at 70◦ the ring of dislocations remaining from the first rotation round is

pushed outwards, while a new ring is formed on the edge of the central grain, which is

frozen in structure while being rotated. This phenomenon is present in all cases where

the rotation is slow enough for it to occur while the size of this effect depends on the

rotation speed (the lower the speed, the more information that can be preserved about

the sample’s history).

Figure 7.4 shows the grain boundary free energies of rotated grains. The APFC

model does not show artifacts of an unphysical grain boundary which would increase

the free energy of the grain boundary at rotation angles above 30◦ to unphysically high

levels. Statically rotated grains show the same grain boundary free energies for angles

α and 60◦ − α, which confirms that the unphysical grain boundary was removed in

the APFC model. Since the grain size is small, the calculated free energy of the grain

boundary depends strongly on the exact atomic structure at the distance of the radius

from the center of the atomic lattice. The radiuses of the grains are too small for the
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Figure 7.3: The images show the microstructure surrounding a rotated circular grain in
the PFC (left column) and APFC (right column) models. The first row shows the mi-
crostructure around a static grain rotated by 10◦. The second row shows the microstruc-
ture from a simulation with a dynamically rotating grain (rotation period t0 = 200000)
when the rotation of the grain matches 10◦. The third row shows the microstructure
after the same seed as in the second row was rotated by 70◦. Since the rotational sym-
metry of the triangular crystal lattice equals the difference of the rotations in the last
two rows, the difference in microstructure in the last two rows is due to the memory
effects in the material. For better comparison, the size of the APFC model plots was
scaled with lAPFC , like elsewhere in the present work.



92 CHAPTER 7. DYNAMIC GRAIN ROTATION IN THE APFC MODEL

Figure 7.4: Free energy of the grain boundary formed around a rotating circular grain.
The memory effect, observed by an increase in the grain boundary free energy in the
second rotation period ([60◦, 120◦]) compared with the first period ([0◦, 60◦]), increases
with a longer period of rotation of the grains (t0) in both models. Due to the small size
of the rotating grains, the exact atomic structure at the grain boundary has a large effect
on the final grain boundary free energy, bringing the result that the grain with medium
radius (R = 49.0) has the grain boundary with the highest free energy of all grains
with the same rotation period in the PFC model. For static configurations simulations
were performed only for rotation angles [0◦, 60◦] and were periodically repeated in the
graphs.



7.4. Results

discretization effects to be averaged out. Accordingly, the calculated free energy for the

middle of three selected grain radiuses (R = 49.0) exceeds that of the other two selected

grain radiuses. With increasing grain radius, the discretization effects should disappear.

As this would also considerably increase the simulation times, smaller radiuses were

chosen since the aim of the comparison was to qualitatively compare the two models

in a setting with dynamical grain rotation, and the small grain size was sufficient for

demonstrating the improved model’s ability to perform well in such conditions.

Both models show qualitatively the same effects of increasing the grain rotation

time (t0) and dependency of the grain boundary energy on the rotation angle. At fast

rotation speeds (t0 = 25000), the atomic structure does not have enough time to find a

free energy minimal configuration before the seed is again rotated and the most ener-

getically favorable configuration changes. The grain boundary therefore has a structure

that has only partially relaxed from an imposed configuration into an energetically more

favorable configuration and does not exhibit any memory effects. The grain boundary

structures are presented in Fig. 7.5. At slow rotation speeds (t0 = 200000), the atomic

structure relaxes into a local free energy minimum before the grain is sufficiently rotated

to change the free energy minimal configuration. The atomic configuration around the

grain boundary therefore keeps some memory of the past configurations since the cur-

rent configuration represents a local minimum closest to the previous local free energy

minimum. Due to this material memory effect, the grain boundary does not disappear

when the grain is rotated by the crystal’s symmetry rotation (60◦). The free energies of

the rotating grains show an increase in the free energies in the second rotation period

(60◦ − 120◦) for slowly rotating grains. This is due to the first ring of the dislocations

that formed in the first rotation period (0◦ − 60◦) not being annihilated upon comple-

tion of the rotation period (at the rotation 60◦ of the crystal’s symmetry) but being

instead pushed outwards with a new ring of dislocations forming inside the first ring, as

presented in Fig. 7.6. This phenomenon is observed in both models. At some rotation

α above 60◦, the two rings of dislocations partially annihilate each other and the free

energy drops to similar values as observed in the first rotation period. The delay of this

effect (α− 60◦) increases with the length of the rotation period since with a decrease of

rotation speed the microstructure is not perturbed as much with the imposed rotation

and stays at the same gradually changing local free energy minimum.
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Figure 7.5: Grain boundary structures around a rotating grain. The grain rotates fast
(t0 = 25000), therefore the atomic structure on the grain boundary does not relax far
from the imposed configuration and does not remember the past. The images in the
rows show the microstructure calculated with the PFC (left column) and APFC (right
column) models when the grain is rotated by 20◦, 45◦, 52◦, and 60◦.



Figure 7.6: Grain boundary structures around a rotating grain. The grain rotates
slowly (t0 = 100000), therefore the atomic structure on the grain boundary relaxes
into the new local free energy minimum before the grain is rotated; the microstructure
thus reflects the past free energy minimal configurations. The images in rows show the
microstructure calculated with the PFC (left column) and APFC (right column) models
when the grain is rotated by 45◦, 52◦, 60◦, and 80◦.
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7.5 Summary and conclusion

The development and transformation of the microstructure in our chosen dynamic pro-

cess show the same effects in the PFC and APFC models, thereby assuring that our

improvements to the APFC model may be used in simulations of processes that include

dynamic changes in grain rotation, without the effects of an unphysical grain boundary.

Our improvements to the APFC model enable microstructure modelling for larger

sizes of material during industrially important processes where grain rotation occurs.

Enabling AMR algorithms to efficiently focus the computational power in the areas

around the grain boundaries a key step in efficiently modelling microstructure develop-

ment in larger simulation domains, while with our improvements the use of AMR is not

hindered by an artificial grain boundary.

We chose the problem of a single circular grain that is forcibly rotated in an unper-

turbed matrix as the simplest possible example to verify the new model’s behavior in

conditions of dynamically rotating grains. This example model also appears to demon-

strate some effects of material memory which could be further analyzed. Due to limited

computational resources, we chose the smallest grain sizes that would allow us to check

our APFC model’s behavior. Unfortunately, the very small grain sizes do not allow

us to deduce much about the effects of material memory due to the free energy’s great

dependence on the exact configuration of the atoms at the cut-off grain boundary on the

edge of the rotating grain. Increasing the grain sizes would solve this problem and allow

investigation of the memory effects in the material using a simple simulation setup.

7.6 Appendix A: Comparing selected simulations

This section presents a selected set of simulations for use in understanding the differ-

ences/similarities in the observed microstructures of rotating grains. The microstructure

is presented at 8 different grain rotations, the even pages showing the PFC model and

the odd pages showing the APFC model. When static configurations are shown, the

configurations for rotation angles exceeding ϑ = 60◦ present the results obtained for an-

gles ϑcalculation = ϑ modulo 60◦, and are presented at the same location on the pages so

that a comparison can easily be made with microstructures, obtained from simulations

of rotating grains.

The first set of Figures 7.7-7.12 presents grains in static configurations. The images
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at ϑ = 56◦ reveal some of the reasons the results calculated for the grain boundary free

energies vary much too much to allow a good generalization of the results. The rotated

grain observed at a small radius R = 36.7 does not even form any dislocations. At a

medium radius R = 49.0, the deformation is spread over the entire grain perimeter,

increasing the grain boundary energy. At the largest radius R = 61.2, the deformation

is condensed in 6 dislocations, which lowers the calculated grain boundary energy.

For a slowly rotating grain (t0 = 100000), the dislocations formed on the grain

boundary are slowly pushed outwards in all cases. Above the crystal’s symmetry ro-

tation angle of 60◦, another ring of dislocations forms within the ring of existing dis-

locations and is again pushed outwards. At some even larger rotation both groups of

dislocations at least partially annihilate each other. This phenomenon is observed in all

simulations. When the grain is rotating too fast, the dislocations do not travel far out

and are immediately annihilated by the newly forming dislocations, and the structure

of two rings of dislocations therefore does not form. The angle at which the dislocations

annihilate or when the second set of dislocations forms also differs among the models,

with grain rotation period t0, and with grain radiuses.

Overall, our simulations demonstrate the new model’s feasibility for simulating phe-

nomena with rotating grains. We can also observe that, in order to draw general conclu-

sions about how the rotation time affects the memory of the material, simulations using

bigger grains are required. Qualitatively matching phenomena are observed in both

models, giving assurance that the new model does not introduce unexpected numerical

errors into the calculations.

The simulations show static grains of all three chosen radiuses simulated with the

PFC and APFC models. A slowly rotating grain (t0 = 100000) is shown with the

largest and smallest of the selected radiuses, simulated with both the PFC and APFC

models. A fast rotating grain (t0 = 25000) is shown only with the largest of the selected

radiuses, simulated with both the PFC and APFC models.
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Figure 7.7: Microstructure in the PFC model at selected rotations. Static grain with
RPFC = 36.7.



Figure 7.8: Microstructure in the APFC model at selected rotations. Static grain with
RPFC = 36.7.



Figure 7.9: Microstructure in the PFC model at selected rotations. Static grain with
RPFC = 49.0.



Figure 7.10: Microstructure in the APFC model at selected rotations. Static grain with
RPFC = 49.0.



Figure 7.11: Microstructure in the PFC model at selected rotations. Static grain with
RPFC = 61.2.



Figure 7.12: Microstructure in the APFC model at selected rotations. Static grain with
RPFC = 61.2.



Figure 7.13: Microstructure in the PFC model at selected rotations. Rotating grain
with t0 = 100000 and RPFC = 36.7.



Figure 7.14: Microstructure in the APFC model at selected rotations. Rotating grain
with t0 = 100000 and RPFC = 36.7.



Figure 7.15: Microstructure in the PFC model at selected rotations. Rotating grain
with t0 = 100000 and RPFC = 61.2.



Figure 7.16: Microstructure in the APFC model at selected rotations. Rotating grain
with t0 = 100000 and RPFC = 61.2.



Figure 7.17: Microstructure in the PFC model at selected rotations. Rotating grain
with t0 = 25000 and RPFC = 61.2.



Figure 7.18: Microstructure in the APFC model at selected rotations. Rotating grain
with t0 = 25000 and RPFC = 61.2.
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Chapter 8

Conclusions

In this work we improved the amplitude expansion of the PFC model (APFC) to enable

simulations of grains with arbitrary and changing rotations on an adaptive mesh. Our

improvements eliminate the problem of beats in the complex amplitudes of APFC mod-

els that hinder use of AMR techniques in these models, and eliminate the unphysical

grain boundary that occurs between grains rotated by a crystal’s symmetry rotation

and effectively limits the grain rotations which the APFC models can describe for up

to a of the crystal’s symmetry rotation.

The improvements are based on introducing an auxiliary field that describes rota-

tion of a local grain in the APFC model. This field is derived from the main phase

field variables (Aj) and is never directly used in calculations. The idea of deriving an

additional field that is not to be used in the calculations represents a new contribution

of this thesis. The utility of such a field may not seem obvious (i.e. why derive an extra

field, if not for use in calculations?). However, in cases where the area occupied by

the grain boundaries is much larger than the total simulation domain, which is the case

when simulating the microstructure’s evolution in metallic alloys, the usability of such a

field vastly exceeds the costs of its calculation. We successfully used the auxiliary local

rotation field to exploit the rotational covariance of the complex amplitude equations

in the APFC model and effectively align the basis vectors for the complex amplitudes

with the local grain in all calculation points. By doing this, we removed the problem

of the beats in complex amplitudes and enabled mesh refinement at all computational

points.

As presented in Chapter 3, the results of simulations using the improved algorithm
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closely match the previous results, and the scaling of the number of computational nodes

is similar to that achieved in earlier works [9]. This verifies that our improvements

merely exploit the structure of the APFC equations in a way that does not introduce

any notable sources of error into the model, while transforming the equations into a

form able to be used with AMR techniques in the Cartesian form of the equations.

In our next step, we made a further improvement to the model that removes the

unphysical grain boundary from the APFC model, enabling APFC simulations with

grains of arbitrary rotations. The APFC model is derived from the PFC model using

an expansion of the density function in the form of density waves defined in equation

(3.1), repeated here for convenience

ψ =
3∑︂

j=1

Aje
ikj·x +

3∑︂
j=1

A∗
je

−ikj·x +ψ (8.1)

This ansatz expresses the rotation of grains described by the density function ψ in

two different ways, by rotation of the base vectors kj and by beats in the complex

amplitudes described in equation (3.12). Both expressions of the rotation of the local

grain are treated separately in the APFC model, and thus when the rotation expressed

by the beats approaches the amounts of rotation expressed by the base vectors, which

happens at approximately half the symmetry rotation of the modelled crystal structure,

standard APFC models are unable to connect both expressions of the rotation and

show an unphysical grain boundary [10] in areas where this occurs. Our improvements

enable the models to make the connection between both expressions of the grain rotation

by use of the local rotation field, which captures the rotation expressed by the beats

in the complex amplitudes. The algorithm matches the complex amplitudes in all

computational nodes according to the physically correct rotations of the local grain,

which removes the unphysical grain boundary as seen in Fig. 3.5.

The removal of the unphysical grain boundary from the APFC models effectively

corrects the grain boundary energies in approximately half of the grain boundaries in

case where the initial seeds were arbitrarily rotated within the range of one symmetry

rotation of the crystal lattice. In case the grain rotation is truly random or the grains

can rotate during the simulation, the fraction of grain boundaries with correct energies

in the APFC model is 1/2Nsym where Nsym is the order of the rotational symmetry

of the crystal lattice (Nsym = 6 for triangular lattice). This significantly improves the

applicability of the APFC models to the modelling of industrially important processes
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because grain rotation occurs in many of them.

We compared the grain boundary energies obtained with our improved APFC model

with previously published results [51] (see Fig. 6.3) and found good agreement between

the results for angles less than half the crystal’s symmetry rotation. For larger angles,

our improvements successfully removed the effects of the unphysical grain boundary

and matched the published results for grain boundaries at a shifted angle. The new

improvements correctly matched results published previously at small and large rotation

angles, with a smooth transition between configurations at an appropriate angle.

In Chapter 7 we verified that the new improvements do not introduce unexpected

errors into the APFC model when grains rotate dynamically in the simulation, by

modelling a rotating grain in a solidified matrix. We observed the same phenomena in

our improved APFC model and in the basic PFC model (Fig. 7.3), corroborating that

the newly developed improvements can enable APFC simulations of processes, where

grain rotation occurs.

The improvements we developed are based on a local rotation field derived from

the complex amplitudes of the APFC model combined with an exploit of the rotational

covariance of the dynamic equations of the APFC model. It should be noted that

the application of local rotation comes at the price of having to numerically convert

the amplitudes between different local rotations in all steps of the calculation. This

introduces additional calculations compared to using the basic APFC model. However,

as the improvements significantly reduce the number of computational points required,

this is a good tradeoff in simulations of samples with a realistic grain boundary to

volume ratios. It is also noted that the local rotation can be turned off in parts of

the model where it is not needed, which speeds up the calculations in that part of the

model. The improvement should be seen as a tool to accelerate simulations: it can be

selectively applied to areas/computational nodes where its introduction has a positive

effect on the speed of simulations. Most notably, the local rotation could be turned

off at the lowest level of mesh refinement where it is not of much use and where most

of the computational power is spent. The aim of the local rotation is to enable mesh

refinement. Therefore, where the mesh cannot be refined, it might be best to turn it off.

This can be easily achieved as its introduction does not change the evolution equations

in any way. Another possibility for further speedups in simulations is to discretize the

local rotation angles. After the local rotation values are discretized, the conversion of

complex amplitudes at different local rotations must be performed in a significantly
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smaller area than before. As this is the first research based on the new approach, we

opted to simplify the algorithms as much as possible and not introduce any of the

possible improvements mentioned above, which are listed here mode as reference for

any reader interested in further developing this approach.

The improvements presented in this thesis can also be applied to other variants of

the APFC model and combined with other improvements made to it. Extending this

approach to 3D is straightforward and changing applications to APFC models with a

different set of dynamic equations (e.g. an APFC model that includes instantaneous

relaxation of elastic deformations [53]) is possible as all models derived from the APFC

model should preserve the rotational covariance of the governing equations.

A relatively straightforward application of the improvements would be to study the

evolution of the grain orientation distribution function in a process where a sample with

larger grains is deformed. The deformation could be imposed on the simulation domain

by engineering proper boundary conditions which could match an industrial process

such as rolling or forging. The temperature profile could also be varied during such

simulations to match the same industrial conditions. It would be interesting to see the

atomistic picture and dislocation motion in phenomena observed during material flow

and deformation, usually studied only on the level where the material is treated as a

continuum.
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Razširjeni povzetek v slovenskem
jeziku

9.1 Uvod

Sodobna znanost o inženirskih materialih temelji na spoznanju, da so lastnosti mate-

rialov do velike mere odvisne od mikrostrukture in niso povsem določene s kemijsko

ali fazno sestavo materiala. To še posebej velja za termomehanske lastnosti kovinskih

zlitin. Mikrostrukturo lahko opišemo na več skalah [1, 2], ki jih v grobem delimo na

kvantnomehansko, atomistično, mezoskopsko, ki ustreza nivoju zrn oziroma podzrn, in

makroskopsko, ki je običajno večja ali enaka vzorcem za mehanske preizkuse. Zaradi

tako velike dimenzijske raznolikosti posameznih mikrostrukturnih elementov, komple-

ksnosti vseh možnih interakcij med njimi in različnih časovnih skal, na katerih potekajo

procesi, ki določajo kinetiko razvoja mikrostruktur, zahteva njihovo kvantitativno fi-

zikalno napovedovanje uporabo modelov in simulacij. To še posebej velja za primere,

ko je raziskovani pojav eksperimentalno težko določljiv. S stališča prakse je uporaba

numeričnih pristopov z napovedno močjo zaželena predvsem zaradi zmanjšanja šte-

vila večinoma dragih eksperimentov, potrebnih za optimizacijo materialnih lastnosti,

in za načrtovanje novih postopkov ter tehnologij. Poseben pomen imajo računalniške

simulacije pri razumevanju pojavov, kjer preizkusov v praksi ni mogoče izvesti zaradi

varnostnih ali praktičnih razlogov.

Seveda pa imajo tudi računalniške simulacije pri raziskavah inženirskih materialov

svoje omejitve, ki največkrat izvirajo predvsem iz časovnih in prostorskih skal procesov,

ki jih je mogoče z razpoložljivo računalniško opremo simulirati. Na primer metode, ki

niso oprte na nobene eksperimentalne vhodne podatke in jih imenujemo “ab initio” ter

temeljijo na kvantni mehaniki, so v današnjem času dimenzijsko izredno omejene. Po
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drugi strani pa se je omenjenim omejitvam zaradi časovne in prostorske skale delno mo-

goče izogniti, kadar uspemo teorije in modele na različnih skalah medsebojno sklopiti.

Takšen opis imenujemo večnivojski pristop oziroma simulacije na več skalah (ICME)

[3], pri tem pa velikokrat ravnamo tako, da za vsako skalo posebej uporabimo najpri-

mernejše modele in metode, ki jih po navadi z raznimi ad-hoc rešitvami sklopimo tako,

da izbrane parametre izmenjujemo med skalami, ali pa s simulacijami na nižjih skalah v

reprezentativnih volumnih določimo vrednosti spremenljivk, ki jih nato uporabimo na

višji skali. Takšno medsebojno “mešanje” različnih modelov je povezano z različnimi te-

žavami in velikokrat vodi do vprašljivih rezultatov. Na atomističnem nivoju je pogosto

uporabljana metoda molekularne dinamike, ki pa je numerično zelo zahtevna in zato

omejena na spremljanje pojavov preko kratkih časov v majhnih vzorcih simuliranega

materiala. Večje vzorce materiala lahko modeliramo s pomočjo klasične teorije gostotnih

funkcionalov, pri kateri material že opišemo s poljem. Opis s pomočjo polja uporabimo

tudi pri metodi faznega polja kristala (PFC) [5, 6], pri kateri polje predstavlja verje-

tnostno gostoto atomov na določenem mestu in na kateri temelji ta doktorska naloga.

Metoda PFC namreč predstavlja pomemben napredek pri modeliranju materialov na

atomskem nivoju. Njena izboljšava, ki temelji na uporabi pristopa renormalizacijske

grupe (metoda APFC) [7, 8] omogoča modeliranje in simulacije mnogo večjih volumnov

materiala in prehod z atomistične skale na mezoskopsko preko povezave z zelo razšir-

jenimi metodami faznega polja [4], ki omogočajo simulacije razvoja mikrostruktur na

mezoskopski prostorski skali. Metoda APFC izrazi atomsko gostoto kot vsoto valov z

določenimi kompleksnimi amplitudami. Te kompleksne amplitude se s krajem spremi-

njajo veliko počasneje kot atomska gostota, saj predstavljajo amplitudo hitro nihajoče

funkcije atomske gostote, in so kot take že veliko bolj primerne za uporabo v kombinaciji

s tehnikami prilagodljivega zgoščevanja mreže računskih točk (AMR). Učinkovito upo-

rabo tehnik AMR v APFC modelih omejuje pojav utripanja kompleksnih amplitud v

zrnih, ki so rotirana glede na izbrane osnovne vektorje, uporabljene pri razvoju gostote.

Poleg utripanja kompleksnih amplitud pa je v modelih APFC problematičen tudi pojav

nefizikalne meje med zrni, ki so medsebojno rotirana za simetrijsko rotacijo kristala. Ta

meja onemogoča APFC simulacije pojavov, pri katerih zrna kristalov lahko rotirajo ali

pa je nesmotrno omejevati rotacije zrn na določen interval.

Ta doktorska disertacija prinaša nove načine za odpravo ovir pri efektivni uporabi

modelov APFC za modeliranje industrijsko pomembnih procesov za preoblikovanje ma-

teriala. V poglavju 5 predstavimo razvito rešitev za odpravo utripanja v modelih APFC

z uvedbo polja lokalne rotacije, preko katerega omogočimo prostorsko odvisno rotacijo

124



9.2. Uvod v model faznega polja kristala

osnovnih vektorjev za razvoj atomske gostote, v poglavju 6 nadgradimo uporabo po-

lja lokalne rotacije z izboljšavo, ki odpravi nefizikalno mejo med zrni, v poglavju 7 pa

predstavimo simulacije rotirajočih zrn z izboljšanim modelom APFC. Celotne izboljšave

modelov APFC, razvite v sklopu te doktorske disertacije omogočijo APFC simulacije

procesov, pri katerih zrna lahko rotirajo, na mrežah s prilagodljivo gostoto računskih

točk. To odpre nove možnosti za raziskave razvoja mikrostrukture v industrijsko po-

membnih procesih.

9.2 Uvod v model faznega polja kristala

Model faznega polja kristala temelji na minimizaciji proste energije funkcionala, ki je

oblikovan tako, da so njegove rešitve periodične funkcije s simetrijo kristalne mreže

[5, 6]. Kot tak naravno vsebuje mnogo pojavov, povezanih s kristali: elastičnost v

kristalni fazi, topološke defekte v kristalni mreži, rast kristalnih zrn, energijo meje med

zrni in fazne transformacije med trdno in tekočo fazo. Zasnovan je bil na podobnosti

kristalnih sistemov z drugimi periodičnimi sistemi, a ga lahko izpeljemo tudi iz klasične

teorije gostotnih funkcionalov (CDFT) pod nekaj predpostavkami [11]. Za razliko od

modelov, temelječih na CDFT model PFC operira s časovno in krajevno povprečenim

poljem gostote atomov, zato lahko doseže večje volumne in simulacijske čase. Zaradi

navedenih lastnosti je model PFC zelo primeren za preučevanje pojavov, pomembnih za

razumevanje razvoja mikrostrukture kovinskih materialov, saj lahko z njim modeliramo

mikrostrukturo dovolj velikih volumnov za preučevanje interakcije med mejami zrn in

defekti.

Začetna oblika modela PFC je lahko stabilizirala samo eno kristalno strukturo [5],

čeprav je lahko prikazala tudi druge, metastabilne kristalne strukture in stabilizirala

progasto fazo. Osnovna oblika funkcionala PFC stabilizira kristalne oblike, za opis ka-

terih je dovolj le en vrh v dvodelčni korelacijski funkciji. Z dodajanjem novih načinov

za stabilizacijo več vrhov dvodelčnih korelacijskih funkcij se lahko stabilizira faze, v ka-

terih je za opis kristalne simetrije pomembnih več vrhov teh funkcij [12, 13]. Strukturni

model PFC (XPFC) [14, 15] je bil razvit z namenom enostavnejše stabilizacije faz s kom-

pleksno simetrijo in deluje na modeliranju v Fourierovem prostoru, kjer je dvodelčna

korelacijska funkcija predstavljena kot vsota Gaussovih vrhov pri valovnih vektorjih, ki

ustrezajo valovnim vektorjem faz, ki jih želimo stabilizirati. Še boljše možnosti sta-

bilizacije faz s kompleksnimi simetrijami prinaša vključevanje trodelčnih korelacijskih
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funkcij v model PFC [16, 17]. Osnovni model PFC [5], ki je vključeval le binarno zmes,

so tudi razširili [18, 19] na ternarne zmesi.

Model PFC je bil prav tako razširjen, da vključuje tudi pojave, ki jih osnovni model

PFC ni najbolje opisal, na primer hitre elastične deformacije [20], prostorsko anizotro-

pijo [21], tekoče kristale [22, 23], feromagnetične in feroelektrične pojave [24, 25]. Za

poglobljen opis možnih razširitev modela PFC priporočamo pregledni članek [26], za

detajlne opise določenih razširitev pa disertacije [27–31].

9.2.1 Landauova teorija faznih prehodov

Landauova teorija faznih prehodov temelji na predpostavki, da je prosta energija sistema

zvezna funkcija parametra urejenosti

f(Ω, T ) = a2Ω
2 + a3Ω

3 + a4Ω
4 (9.2)

kjer je Ω parameter urejanja, T pa temperatura. Za simulacijo faznih prehodov mora biti

koeficient a2 odvisen od temperature kot a2 = T−Tc
Tc

ã2, kjer je ã2 pozitivna konstanta.

Fazni prehodi drugega reda so zvezni v parametru urejanja, prehodi prvega reda pa

predstavljajo prehode med fazami z neničelno latentno toploto. Prikazani so na sliki 9.1.

Slika 9.1: Proste energije v Landauovi teoriji faznih prehodov. V zveznem faznem pre-
hodu prvega reda se parameter urejanja Ω zvezno spremeni pri prehodu skozi kritično
temperaturo Tc. V faznih prehodih drugega reda pa se pri prehodu skozi tempera-
turo faznega prehoda T1 parameter urejanja spremeni nezvezno, in pri tej temperaturi
globalni minimum proste energije nezvezno preskoči na neničelno vrednost Ω.

Landauova teorija faznih prehodov je osnova za modele faznega polja (PF), in v
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modelu PFC nastopa kot del funkcionala proste energije, ki opiše prehod med fazami.

9.2.2 PFC-model čistega materiala

Prosta energija čistega materiala je podana z enačbo

∆F = ∆Fid +∆Fex +∆Fext (9.3)

kjer je ∆F prosta energija celotnega sistema, ∆Fid je prosta energija sistema, ki izvira iz

termodinamskih odvistnosti, ∆Fex je prosta energija, ki izvira iz interakcije med delci,

in ∆Fext je prosta energija zaradi zunanjih polj. Če prosto energijo sistema izrazimo z

atomsko gostoto, dobimo

∆Fid/kBT =

∫︂
dr [ρ ln(ρ/ρ0)− δρ] (9.4)

kjer je kB Boltzmanova konstanta, T temperatura ρ = ρ(r), δρ = ρ−ρ0 in ρ0 povprečna

atomska gostota [11, 33]. Prosta energija, ki izvira iz atomskih interakcij, pa je po teoriji

CDFT

∆Fex/kBT =

∫︂
dr

[︄
−

∞∑︂
n=2

1

n!

∫︂ n

i=1
driδρ(ri)Cn(r1, r2, . . . , rn)

]︄
(9.5)

kjer je Cn n-delčna korelacijska funkcija izotropne tekočine [11]. Prispevek k prosti

energiji zaradi zunanjih polj je

∆Fext =

∫︂
drM(r)

δF

δM
(9.6)

kjer je M zunanje polje (npr. magnetno polje) [4]. V tem delu ne obravnavamo vpliva

zunanjih polj, zato ta prispevek k prosti energiji vedno zanemarimo (∆Fext = 0).

Uvedemo brezdimenzijsko atomsko gostoto kot ψ = (ρ−ρ0)/ρ0. Da izpeljemo model

PFC, razvijemo idealno prosto energijo do ψ4

∆Fid/kBTρ0 =

∫︂
dr

[︃
∆B

2
ψ2 − t

3
ψ3 +

v

4
ψ4

]︃
(9.7)

kjer so ∆B = 1, t = 1/2 in v = 1/3 parametri, kot jih dobimo iz teorije CDFT, v praksi

pa jih uporabimo kot proste parametre za prilagajanje faznega diagrama materialu, ki

ga želimo modelirati.
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Prispevek k prosti energiji zaradi meddelčnih interakcij v modelu PFC razvijemo

v vrsto do dvodelčnih interakcij (nekatere razširitve modela PFC vsebujejo trodelčne

interakcije). Dvodelčno korelacijsko funkcijo v Fourierovem prostoru aproksimiramo s

polinomom četrte stopnje Ĉ2(k) = Ĉ20+Ĉ22k
2+Ĉ24k

4, kjer so sode potence prepovedane

zaradi simetrije. Za to so v modelu vrhovi gostotne funkcije bolj razmazani kot v

modelih CDFT. Končna oblika tega prispevka k prosti energiji je tako

∆Fex/kBTρ0 =

∫︂
dr

[︃
BX

ψ

2
(1 + 2∇2 +∇4)ψ

]︃
(9.8)

kjer so konstante Ĉ20,Ĉ22 in Ĉ24 izbrane tako, da jih lahko izrazimo z le eno konstanto.

Končna oblika PFC funkcionala proste energije je tako

∆F/kBTρ0 = F =

∫︂
dr

[︃
BL

2
ψ2 − t

3
ψ3 +

v

4
ψ4 +BX

ψ

2
(2∇2 +∇4)ψ

]︃
(9.9)

=

∫︂
dr

[︃
∆B

2
ψ2 − t

3
ψ3 +

v

4
ψ4 +BX

ψ

2
(1 +∇2)2ψ

]︃
(9.10)

kjer je BL = ∆B + BX . BL in BX sta izotermični stisljivosti tekoče in trdne faze.

Prvotni model PFC je bil izpeljan preko podobnosti s Swift-Hohenbergovim modelom in

ni vseboval kubičnega člena. Neničelno vrednost tega člena utemeljimo preko izpeljave

iz teorije CDFT , v praksi pa ta čelen uporabimo za izbiro ravnovesne atomske gostote

sistema.

Dinamične enačbe za model PFC izpeljemo preko disipativne dinamike modela B

[4, 26]

∂ψ

∂t
= Γ∇2

(︃
δF

δψ

)︃
+ η = Γ∇2

(︁
BLψ − tψ2 + vψ3 +BX(2∇2 +∇4)ψ

)︁
+ η (9.11)

kjer je Γ konstanta običajno enaka 1, in η stohastičen šum ⟨η(r, t)η(r′, t′)⟩ = −ΓkBT∇2δ(r−
r′)δ(t− t′), v tem delu nastavljen na 0 v simulacijah.

9.3 Amplitudni model faznega polja kristala

Amplitudni model faznega polja kristala (APFC) je izboljšava modela PFC s pomočjo

razvoja funkcije atomske gostote v vsoto valov s kompleksnimi amplitudami, usmerje-

nimi v smereh izbranih vektorjev recipročne mreže kristalne faze. Slika 9.2 prikazuje
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razmerje med kompleksnimi amplitudami in atomsko gostoto. Model APFC je prvi

Slika 9.2: Kompleksne amplitude Aj predstavljajo amplitudo ovojnice funkcije gostote
atomov ψ. Medtem ko se funkcija gostote ψ, na razdaljah manjših od valovne dolžine
a0, spreminja hitro, se kompleksne amplitude Aj znatno spremenijo šele na dolžinah,
primerljivih z debelino meje w.

razvil Goldenfeld s sodelavci [7, 8] preko izpeljave s pomočjo teorije renormalizacij-

ske grupe. Poglavitna prednost modela APFC je računanje s pomočjo amplitud, ki se

spreminjajo veliko počasneje, kot se spreminja atomska gosta, in so zato primerne za

uporabo v kombinaciji s tehnikami adaptivnega zgoščanja mreže računskih točk (AMR)

[9]. Vsota kvadratov vseh kompleksnih amplitud predstavlja agregatno stanje materiala

in tako model APFC povezuje model PFC s klasičnimi modeli faznega polja. Obstajajo

različne izpeljave modela APFC, tu bomo na kratko predstavili izpeljavo s pomočjo

volumskega povprečenja in ogrobljevanja [48, 58, 59].

Za izpeljavo APFC modela materiala, ki kristalizira s trikotno simetrijo, uporabimo

nastavek

ψ =

3∑︂
j=1

Aje
ikj·x +

3∑︂
j=1

A∗
je

−ikj·x +ψ

=

3∑︂
j=1

Aje
ikj·x +CC +ψ (9.12)

kjer CC pomeni kompleksno konjugirano vrednost predhodnega izraza, Aj = Aj(r) so
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kompleksne amplitude, kj so osnovni vektorji recipročne mreže, podani v enačbi (9.13)

k1 =k0(−i
√
3/2− j/2), k2 =k0j, k3 =k0(i

√
3/2− j/2) (9.13)

s k0 = 1 in ψ = ψ(r) je prostorsko odvisna povprečna gostota atomov. V izpeljavi s

pomočjo povprečenja naredimo konvolucijo členov v izrazu za prosto energijo PFC z

normirano izglajevalno funkcijo ξ [18, 48, 60]

⟨f(r)⟩V =

∫︂ +∞

−∞
drf(r′)ξV (r− r′) (9.14)

kjer je f(r′) funkcija, ki jo izglajujemo, in ⟨f(r)⟩ izglajena funkcija. Najenostavnejši

je izbor izglajevalne funkcije, ki je konstantna znotraj enotske celice kristala in nič

zunaj nje. Da izpeljemo izglajen funkcional proste energije, izražen s kompleksnimi

amplitudami Aj , vstavimo nastavek (9.12) v prosto energijo modela PFC (9.10) in

zamenjamo vrstni red integracije ter upoštevamo, da se vsi členi, ki nihajo z neničelnim

koeficientom, v eksponentni funkciji izničijo [48, 52]

F =

∫︂
dr

[︄
ψ
2

2
− t

ψ
3

6
+ v

ψ
4

12
+ (1− tψ + vψ

2
)

⎛⎝ 3∑︂
j=1

|Aj |2
⎞⎠

−(t− 2vψ)[A1A2A3 +A∗
1A

∗
2A

∗
3] +

v

2

⎡⎣ 3∑︂
j=1

|Aj |4
⎤⎦

+2v

⎡⎣ 3∑︂
j=1

3∑︂
m>j

|Aj |2|Am|2
⎤⎦+BX

3∑︂
j=1

|(∇2 + 2ikj∇)Aj |
]︄

(9.15)

ter izpeljemo dinamične enačbe modela APFC preko modela C [49]

∂ψ

∂t
= ∇2 δF

δψ
(9.16)

∂Aj

∂t
= − δF

δA∗
j

(9.17)

9.4 Numerične metode

Numerično reševanje matematičnih problemov je poznano že tisočletja. Numeričnega

reševanja, ki lahko da le približen rezultat, se lotimo, ko ne poznamo analitičnih rešitev

določenega problema. Pri fizikalnih problemih je pogosto res, da analitične rešitve
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diferencialnih enačb niso poznane. To drži tudi za diferencialne enačbe, izpeljane iz

modelov PFC in APFC, zato v simulacijah operiramo z numeričnimi približki rešitev.

Za namene numeričnega reševanja diferencialnih enačb moramo čas in prostor dis-

kretizirati. To lahko naredimo le, če je rešitev, ki jo iščemo, zvezna. Numerično odvod

funkcije aproksimiramo preko razvoja funkcije rešitve f v Taylorjevo vrsto okrog točke

x:

f(x+ h) = f(x) + f ′(x)h+ h2(. . . )

⇓ (razvoj do h2)

f ′(x) =
f(x+ h)− f(x)

h

⇓ (diskretiziramo na regularni mreži, x = nh, f(nh) = fn)

f ′n =
fn+1 − fn

h
(9.18)

V tem delu smo zaradi enostavnosti implementacije vedno uporabljali le približke prvega

reda, lahko pa obdržimo več členov v Taylorjevi vrsti in je približek bolj točen a za ceno

dodatnega računanja.

Prostor običajno diskretiziramo z delitvijo na enakomerno mrežo točk. Bolj učinko-

vito je računanje na mreži, kjer se gostota računskih točk lahko prilagaja spreminjanju

rešitve (AMR). Glavni namen tehnik adaptivnega zgoščevanja računskih točk je kon-

centracija računske moči na območja simulirane domene, kjer se rešitve spreminjajo

hitreje, saj se tako poveča hitrost računanja brez znatne izgube natančnosti rešitev.

Primer adaptivne mreže je prikazan na sliki 9.3. Med računskimi elementi (“Compute

node”), v katerih rešujemo diferencialno enačbo z numerično shemo, so elementi mreže

(“Ghost node”), v katerih vrednosti izračunamo s povprečenjem vrednosti v sosednjih

računskih elementih. Število vmesnih elementov, ki jih potrebujemo, je odvisno od

reda približka za numeričen izračun odvodov. V tem delu zato vedno uporabljamo le

približke prvega reda.

9.5 Adaptivno zgoščevanje mreže v modelu APFC

V tem poglavju bomo predstavili izboljšave k metodi APFC, ki omogočajo aplikacijo

algoritmov AMR v kombinaciji s kartezično reprezentacijo amplitudnih enačb. Pred-

stavljena rešitev omogoči adaptivno zgoščevanje mreže računskih točk v vseh zrnih,

131



Razširjeni povzetek v slovenskem jeziku

Slika 9.3: Adaptivna mreža računskih točk. Puščice povezujejo računske elemente
mreže, potrebne za izračun odvodov s približkom prvega reda v centralni točki po-
vezav. Med elementi mreže, v katerih rešitev enačb računamo z diferencialno enačbo
(“Compute node”), so elementi mreže, v katerih se vrednosti izračunajo s povprečenjem
sosednjih elementov mreže (“Ghost node”), ki omogočajo povezovanje numerične rešitve
preko več nivojev gostote mrežnih točk.

kar pomembno pohitri simulacije. Rotacija zrn kristala je v modelu APFC izražena z

utripanjem kompleksnih amplitud, ki onemogoči učinkovito uporabo algoritmov AMR.

Obstoječe rešitve [9] so zato namesto s kartezično predstavitvijo kompleksnih amplitud

operirale s fazo/amplitudo posebej, kar je zahtevalo dodatne približke, prineslo nove

težave v model in zakompliciralo uporabo enačb. V praksi se je za reševanje enačb

modela APFC še vedno uporabljala neadaptivna mreža točk. Slika 9.4 prikazuje pojav

utripanja kompleksnih amplitud v rotiranih zrnih skupaj s prikazom osnovnih vektorjev

kompleksnih amplitud Aj .
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k3 , A3

k2 , A2

k1 , A1

Slika 9.4: Osnovni vektorji za kompleksne amplitude Aj in njihova rotacija. V modelu
APFC je rotacija zrn izražena z utripanjem kompleksnih amplitud, kar je prikazano na
desni sliki. Slike prikazujejo ℜ(A1) v zrnih, ki so rotirana za θ = 0◦, 5◦ in 25◦ (v smeri
urinega kazalca od leve spodaj).

9.5.1 Lokalna rotacija kompleksnih amplitud

Naša izboljšava odstrani utripanje kompleksnih amplitud z uvedbo polja lokalne ro-

tacije, ki omogoči lokalno odvisnost rotacije osnovnih vektorjev. Osnovne vektorje za

kompleksne amplitude tako lahko v vseh točkah računa efektivno poravnamo z lokalnim

zrnom, kar odstrani utripanje. Lokalno rotirane kompleksne amplitude uvedemo kot

Aj = Aϑ
j e

iδkj(ϑ)·x (9.19)

kjer so kj(ϑ) = kj + δkj(ϑ) rotirani osnovni vektorji za amplitude. Ker so v popol-

noma strjenem, rotiranem zrnu amplitude konstantne, velja, da je gradient kompleksnih

amplitud nič.

∇Aϑ
j = (∇Aj)e

−iδkj ·x +Aj(−iδkj)e
−iδkj ·x = 0 (9.20)

Iz (9.20) sledi, da mora za lokalno rotacijo, pri kateri utripanje izgine, veljati

δkj(ϑ) =
∇Aj

iAj
= kj(ϑ)− kj (9.21)

V simulacijah poznamo kompleksne amplitude in lahko iz enačbe (9.21) izračunamo

idealno lokalno rotacijo.
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Numerično rešujemo diferencialno enačbo za kompleksne amplitude

∂Aj

∂t
= L̃jAj − 3Aj |Aj |2 − 6Aj

∑︂
k:k ̸=j

|Ak|2 − 6ψ
∏︂

k:k ̸=j

A∗
k (9.22)

kjer so k, j ∈ [1, 3] osnovni vektorji in

L̃j = (1−∇2 − 2ikj · ∇)(−r − 3ψ
2 − {∇2 + 2ikj · ∇}2) (9.23)

rotacijsko kovarianten operator. Parametri ψ in r predstavljajo brezdimenzijsko pov-

prečno gostoto atomov in brezdimenzijsko temperaturo, ki je sorazmerna z razliko tem-

perature do kritične temperature Tc. Zaradi rotacijske kovariantnosti operatorja L̃j se

lahko vse orientacije zrn simulirajo v istem modelu (in rotacija se izrazi z utripanjem

kompleksnih amplitud). Rotacijska kovariantnost operatorja L̃j in osnovnega sestav-

nega dela tega operatorja □ϑ = (∇2+2ikj(ϑ) ·∇) pomeni, da lahko rotacijo in krajevne

spremembe v rotaciji izrazimo neodvisno od glavnega izračuna, in sicer da velja

□ϑAϑ
j = e−iδk·x□Aj (9.24)

kjer je □ = □ϑ=0.

Numerično lahko operator Õϑ apliciramo na lokalno rotirano polje X

Õϑ(x) Xϑ(x)(x) =
∑︂
x̃

Γx̃e
−i(k(x)−k(x̃))·x̃Xϑ(x̃)(x̃) (9.25)

kjer gre sumacija preko vseh sosedov, ki jih vključuje operatorjevo jedro. Õ je lahko

katerikoli izmed rotacijsko kovariantnih operatorjev (Õ ∈ {L̃ϑ
j , L̃ϑ

1j , L̃ϑ
2j}), apliciran na

katerokoli izmed izpeljanih polj (X ∈ {Aϑ
j , L̃1jA

ϑ
j , L̃jA

ϑ
j }). x̃ je krajevni vektor soseda,

ki se ujema z elementom jedra operatorja Γx̃. Da lahko pretvorimo polja med izrazi

z lokalnimi rotacijami pri x in x̃, moramo množiti Xϑ(x̃)(x̃) z rotacijskim faktorjem

e−i(k(x)−k(x̃))·x̃, ki ga shranimo v računske elemente skupaj z vrednostmi Xϑ(x)(x).

9.5.2 Algoritem za izračune z lokalno rotacijo polj

Pri numeričnem reševanju diferencialne enačbe za kompleksne amplitude v sistemu,

kjer je rotacija osnovnih vektorjev krajevno odvisna, moramo pri izračunu upoštevati

te razlike v rotacijah. Ker so vsa polja, s katerimi operiramo, rotacijsko kovariantna,
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lahko rotacijo izoliramo iz računa.

Algoritem, opisan v 4 in 5, deluje na enak način, kot če bi vse sosednje računske

elemente začasno pretvoril v sistem, ki je enako rotiran kot centralni računski element.

Ko so vse rotacije enake, lahko apliciramo običajne evolucijske enačbe za kompleksne

amplitude.

Algoritem 4 Algoritem za evolucijo kompleksnih amplitud.
loop

if step mod adaptation = 0 then
Prilagodi računsko mrežo
Izračunaj lokalno rotacijo
Izračunaj faktorje za pretvorbo med lokalnimi rotacijami

end if
Izračunaj korak evolucijske enačbe kompleksnih amplitud

end loop

Slika 9.5 prikazuje računanje z uporabo algoritmov AMR s prejšnjimi metodami in

našim, izboljšanim algoritmom. Naša rešitev omogoča zgostitev adaptivne mreže v vseh

točkah računanja z uporabo kartezične reprezentacije amplitudnih enačb, ne glede na

orientacijo zrn.

Efektivna uporaba mreže AMR omogoči rast števila računskih točk, sorazmerno z

mejo med zrni, kjer se dogajajo pomembne spremembe, in ne več z volumnom simuli-

ranega področja. Slika 9.6 prikazuje odvisnost števila računskih točk od časa v računu.

Število najprej narašča, saj se z rastjo zrn povečuje velikost meje med zrni. Ko pa se

večina simulacijskega volumna strdi, se število računskih točk ustali na mnogo manjši

vrednosti, kot je število računskih točk na enakomerni mreži.

9.6 Popravek nefizikalne meje med zrni v modelu APFC

Poleg težav z uporabo algoritmov AMR ima model APFC težave tudi s pojavom nefizi-

kalne meje med zrni, ki so medsebojno rotirana za simetrijsko rotacijo kristalne mreže

[10]. Pojav izvira iz dvojne predstavitve rotiranosti zrn v modelu APFC. Po eni strani

rotacijo izražajo smeri osnovnih vektorjev, po drugi pa lahko rotacijo izrazimo tudi

preko utripanja kompleksnih amplitud. Kadar se rotacija, izražena na en način, preveč

približa rotaciji, izraženi na drug način, pride do nefizikalnih pojavov v modelu. Če se

na primer eno zrno zasuče za 60◦ v primerjavi s sosednjim zrnom, bi bilo smiselno v
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Algoritem 5 Izračun lokalne rotacije. Parametri p, q, Aminamp. and ϑmax.phase so
hevristično določeni.

for vsak računski element do
Izračunaj optimalno rotacijo ϑopt:
if |Aϑ

j | > Amin amp. then
V trdnini: iz gradientov
for all j ∈ {1, 2, 3} do

δkj(ϑcurrent) = ℜ
(︁∇A

ϑcurrent
j

iA
ϑcurrent
j

)︁
ϑx,j = 1 + kj(ϑcurrent) · δkj

ϑy,j = (kj(ϑcurrent)× δkj) · êz
end for
ϑopt = ϑcurrent + atan2(

∑︁
j ϑy,j/3,

∑︁
j ϑx,j/3)

else
V kapljevini: konvergiraj k nič
ϑopt = 0

end if
Izgladi spremembe
ϑnew = p× ϑcurrent + q × ϑopt
Prepreči preskakovanje utripov
dϑ = max{vsi sosedje NN} |ϑNN − ϑnew| modulo 2π
kϑ = dx dϑ/ϑmax. phase
if kϑ > 1 then

ϑnew = ϑcurrent + (ϑnew − ϑcurrent)/kϑ
end if
ϑcurrent = ϑnew

end for

enačbah povezati kompleksni amplitudi, ki kažeta v fizikalno najbolj enaki smeri (npr.

A1 in A∗
3), kot to prikazuje slika 9.7. To možnost modelu APFC prinese uvedba lo-

kalne rotacije, saj lahko s pomočjo lokalne rotacije najdemo najbolj ustrezajoče si pare

kompleksnih amplitud in s tem odstranimo pojav nefizikalne meje med zrni iz modela.

Primer nefizikalne meje med zrni je prikazan na sliki 9.8, ki prikazuje mejo med so-

sednjima zrnoma pod kotom 50.1◦. Naša izboljšava modela APFC je uspešno odstranila

nefizikalni pojav in v izboljšanem modelu zraste meja z lastnostmi meje pod kotom 10◦,

kar je fizikalno pravilno v kristalu s simetrijsko rotacijo 60◦.

Z izboljšanim modelom smo izračunali proste energije mej med zrni z različnimi

razlikami v rotacijah in jih primerjali z objavljenimi rezultati. Naša izboljšava se dobro

ujema s prejšnjimi rezultati, v območju, kjer prejšnji rezultati prikazujejo nefizikalne

efekte, pa naša rešitev prikaže pravilno prosto energijo meje med zrni, kot je to prikazano
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Slika 9.5: Razvoj mikrostrukture s časom. Primerjava modela AMR z ali brez lokalne
rotacije. Ko uporabimo lokalno rotacijo se mreža zgosti v vseh zrnih, ne glede na njihovo
rotacijo, in ostane gosta le na mejah zrn in v okolici dislokacij, kjer se amplitude hitro
spreminjajo. Slike prikazujejo povprečno amplitudo (

∑︁
j |Aj |/3) ob različnih časih.

na sliki 9.9.
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Slika 9.6: Število računskih točk v odvisnosti od časa za simulacijo na sliki 9.5. Po
tem, ko kapljevina zamrzne, se število računskih točk neha povečevati. Izboljšan algo-
ritem omogoča znatno manjše število računskih točk, kot bi jih potrebovali v primeru
računanja na enakomerni mreži računskih točk.

−k1 , A∗
1

−k2 , A∗
2

−k3 , A∗
3

k1 , A1

k2 , A2

k3 , A3

ϑ = 55◦

k1 , A1

k2 , A2

k3 , A3

−k1 , A∗
1

−k2 , A∗
2

−k3 , A∗
3

ϑ = 0◦

Slika 9.7: Valovni vektorji v sosednjih računskih elementih z različnimi lokalnimi rota-
cijami (levo: ϑ = 0◦, desno: ϑ = 55◦). Naš algoritem s pomočjo lokalne rotacije najde
ustrezne pare amplitud in pri računanju v enem računskem elementu upošteva ustrezne
sosednje kompleksne amplitude. A2 v levem računskem elementu je tako uporabljena v
kombinaciji z A∗

1 iz desnega računskega elementa, saj je kot med ustreznima valovnima
vektorjema le 5◦.
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Slika 9.8: Prosta energija na meji med zrnoma pod kotom 50.1◦. Prva vrstica (a)
prikazuje nefizikalno mejo med zrni v modelu APFC [10]. Druga vrstica (b) prikazuje
rezultat z izboljšanim modelom, v katerem zraste meja s karakteristikami 10◦ meje.
Spodnja vrstica (c) prikazuje lokalno rotacijo v simulaciji z izboljšanim modelom.
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Slika 9.9: Prosta energija meje med zrni kot funkcija kota med zrni. Vrednosti za modele
PFC1, PFC3, XPFC, APFC(AC) in APFC(ZZ) je objavil Hirvonen s sodelavci [51]. Naš
model se dobro ujema s preteklimi rezultati in z algoritmom ujemanja amplitud uspešno
odstrani nefizikalne efekte iz modela APFC.

9.7 Rotirajoče zrno v modelu APFC

Izboljšave, opisane v poglavjih 9.5 in 9.6, nadgradijo model APFC z možnostjo efektivne

uporabe algoritmov AMR in odstranijo nefizikalno mejo med zrni, ki je doslej onemo-

gočala simulacije zrn v polnem obsegu rotacij. Obe izboljšavi predstavljata pomembna

koraka k možnosti modeliranja industrijsko pomembnih procesov, pri katerih pride do

rotacije zrn z modelom APFC Da bi preverili delovanje naših izboljšav v primeru, pri

katerem zares pride do dinamičnega spreminjanja rotacije zrn, smo simulirali razvoj

mikrostrukture okrog enega okroglega zrna v sredini matrike, ki mu prisilno spremi-

njamo rotacijo z različnimi hitrostmi. Simulacije smo opravili z modeli APFC in PFC,

in kvalitativno primerjali opažene pojave. Znotraj variacije, ki jo prinašajo razlike med

modeli PFC in APFC, so opaženi pojavi primerljivi, zato menimo, da naše izboljšave

prinašajo v model APFC tudi možnosti simulacije pojavov, pri katerih zrna dinamično

rotirajo.

Najprej smo naredili simulacije statičnih rotiranih zrn. Rotirano zrno smo postavili v

matriko, stopili manjše območje v matriki okrog zrna in simulirali razvoj mikrostrukture

dokler se je ta znatno spreminjala. V obeh modelih med simulacijami notranjosti jedra

140



9.8. Zaključki

Slika 9.10: Prosta energija meje okrog rotirajočega, okroglega zrna. Spominski efekt v
materialu poviša prosto energijo meje pri drugem obratu zrna ([60◦, 120◦]) v primerjavi
z istim zrnom pri prvi rotaciji ([0◦, 60◦]). Efekt se poveča s povečevanjem rotacijskega
časa zrn (t0) v obeh modelih. Rezultati statičnih simulacij so periodično ponovljeni čez
celotno območje rotacij.

nismo spreminjali, in rob jedra je tako efektivno predstavljal robni pogoj. V notranjosti

jedra je bila v obeh modelih nastavljena rešitev v približku razvoja po valovih do prvega

reda. Ker v modelu PFC pravilna rešitev odstopa od takšne rešitve, je to eden izmed

virov razlik med modeloma, ki jih ne moremo odstraniti. V simulacijah dinamično

rotiranih zrn smo nerotirana zrna postavili v matriko, počakali, da se rešitev ni več

spreminjala, in šele potem začeli notranjost zrna rotirati v rednih korakih. Rotacija je

potekala z nastavljanjem notranjosti območja zrna na rešitev numerične gostote atomov

ali pa kompleksnih amplitud, ki je ustrezala rotiranemu zrnu.

9.8 Zaključki

V tem delu smo izboljšali model APFC z izboljšavami, ki omogočajo simulacije z zrni

v celotnem območju rotacij in lahko med simulacijo rotacije tudi spreminjajo. Izbolj-

šava omogoča izvajanje takšnih simulacij na adaptivni mreži. Naše izboljšave odstranijo

problem utripanja kompleksnih amplitud v rotiranih zrnih, ki preprečuje efektivno upo-

rabo tehnik AMR v modelih APFC in iz modelov APFC odstranijo pojav nefizikalne

meje med zrni, ki so rotirana za simetrijsko rotacijo kristala v primerjavi z izbranimi

osnovnimi vektorji za razvoj kompleksnih amplitud.

Izboljšave temeljijo na polju lokalne rotacije, ki ga izpeljemo iz kompleksnih am-

plitud. To polje v simulacijah uporabimo, da lokalno poravnamo osnovne vektorje za
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Slika 9.11: Slike prikazujejo mikrostrukturo v okolici rotiranega krožnega zrna v modelih
PFC (levi stolpec) in APFC (desni stolpec). Prva vrstica prikazuje mikrostrukturo okrog
statičnega zrna, rotiranega za 10◦. Druga vrstica prikazuje mikrostrukturo iz simulacije
z dinamično rotirajočim zrnom (perioda rotacije je t0 = 200000) v trenutku ko je rotacija
zrna 10◦. Tretja vrstica prikazuje mikrostrukturo istih zrn v trenutku ko je rotacija zrna
70◦ = 10◦ +60◦. Ker je razlika v rotacijah zrn na spodnjih dveh slikah ravno rotacijska
simetrija kristala, je razlika med mikrostrukturami nastala zaradi spomina materiala.
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razvoj kompleksnih amplitud z rotacijo lokalnega zrna. V kombinaciji z izkoriščanjem

rotacijske kovariantnosti amplitudnih enačb lahko med samim računom pretvarjamo

med kompleksnimi amplitudami pri različno rotiranih osnovnih vektorjih. Tako lahko

eliminiramo utripanje kompleksnih amplitud v modelih in omogočimo zgoščevanje ra-

čunske mreže (AMR) v vseh zrnih. Polje lokalne rotacije uporabimo tudi pri določanju

kompleksnih amplitud, ki ustrezajo osnovnim vektorjem, ki fizikalno kažejo v najbolj

podobnih smereh. Ko v različnih točkah računanja v enačbah povežemo pravilne kom-

pleksne amplitude, eliminiramo tudi problem nefizikalne meje med zrni, ki so zarotirana

za simetrijo kristala z ozirom na začetni izbor osnovnih vektorjev za razvoj kompleksnih

amplitud.

S predstavljenimi izboljšavami omogočimo APFC simulacije industrijsko pomemb-

nih procesov, pri katerih prihaja do rotacije zrn, z uporabo adaptivne mreže računskih

točk (AMR), kar omogoča simulacije z atomsko resolucijo v dovolj velikih domenah,

da lahko preučujemo interakcijo med zrni in mejami zrn, ki je pomemben dejavnik pri

oblikovanju mikrostrukture materiala.
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