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This paper introduces improvements to the amplitude expansion of the phase field crystal model
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I. INTRODUCTION

The microstructure plays a crucial role in determining
the properties of many modern industrially important
materials. Since experiments are expensive and the rela-
tionships between chemical composition, thermo mechan-
ical processing, and the final microstructure are complex,
computer simulations are an important step in the de-
sign of new materials. In order to be able to competi-
tively price the final product, material production usually
occurs in large batches of material. Computer simula-
tions able to efficiently model processes occurring on such
a large span of spatial and temporal scales are scarce,
and frequently include a hierarchy of different models for
modeling processes on different scales that exchange pa-
rameters. Discontinuous transitions between the differ-
ent scales sometimes introduce nonphysical phenomena
that are hard to eliminate, therefore making use of a sin-
gle model preferable. In order to enable modeling of the
microstructure on diffusive time scales, the phase-field-
crystal model (PFC) was developed [1, 2]. A recently de-
veloped amplitude expansion of the PFC model (APFC)
[3, 4] can predict the microstructure of materials in rela-
tively large simulation domains, and in combination with
effective mesh refinement techniques (AMR) [5, 6] can
span many different scales in a continuous manner.

The PFC and APFC models were successfully applied
to the study of many different phenomena such as ferro-
magnetic [7] and ferroelectric [8] effects, the effects of hy-
drodynamic velocity on the microstructure formation [9],
the study of grain boundary motion and polycrystalline
films [3, 4, 10], structural phase transitions [11–13] and
grain boundary energies [14, 15]. The models were im-
proved to cover a wide range of possible materials, includ-
ing materials with different crystal lattices [13, 14, 16–
21] in 2D and 3D, materials with spatial anisotropy [22],
liquid crystals [23, 24], binary systems [20, 25, 26] and
multi-component alloys [27], improved to achieve instan-
taneous mechanical equilibrium [28] and tune the energy
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of defects and interfaces [15].
In our recent work [6], we presented a new way to

achieve adaptive mesh refinement in APFC models us-
ing an auxiliary local rotation field. The local rotation
field was derived from the fields used in the computation,
but was itself never used in calculations. It was used only
to convert the amplitude equations in a system, aligned
with the local grain, where the so-called beats in the
amplitudes disappeared and AMR algorithm was able to
coarsen the mesh.

In this work we show how the local rotation field can
be used to eliminate an unphysical grain boundary de-
scribed by Spatschek et al. [26], occurring between grains
rotated by a crystal’s symmetry rotation, and enable
APFC simulations with a whole range of grain orienta-
tions. This can enable APFC simulations of industrially
important thermo-mechanical processes where grain ro-
tation occurs, such as the hot and cold forming of metallic
materials.

II. APFC MODEL

The PFC model operates on a local atomic density
function ψ which minimizes the free energy functional
[1, 2, 14, 28] given here in terms of dimensionless field ψ
tracking the deviations of the atomic density field from
its average

F =

∫
dr

{
∆B

2
ψ2 +Bx

ψ

2
(1 +∇2)2ψ − t

3
ψ3 +

v

4
ψ4

}
(1)

where ∆B = Bl − Bx. Parameter Bl is related to the
compressibility of the liquid state and Bx to the elas-
tic moduli of the crystalline state. The choice of t and
v determines the magnitude of the amplitudes and the
liquid-solid miscibility gap. The single-mode solution of
the PFC equation in the solid phase has honeycomb sym-
metry within a certain range of parameters and the so-
lution can be approximated as [3–5]

ψ ≈
3∑
j=1

Aje
ikj·x +

3∑
j=1

A∗je
−ikj·x (2)
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where Aj are the complex amplitudes of waves aligned
with the wave vectors

k1 =k0(−~i
√

3/2−~j/2),

k2 = k0~j,

k3 = k0(~i
√

3/2−~j/2), (3)

In order to be able to compare our results with al-
ready published results, we used the same free energy
functional and dynamic equations for our APFC model
as in Hirvonen et al. [14]. The free energy and the dy-
namic equations are

F =cA
∫
dr{(∆B/2)A2 + (3v/4)A4 − 2t(

∏3
j=1Aj + c.c.)

+
∑3
j=1(Bx|LjAj |2 − (3v/2)|Aj |4)} (4)

∂Aj
∂t

= −[∆B+BxL2
j+3v(A2−|Aj |2)]Aj+2t

∏
k 6=j

A∗k (5)

where Lj = ∇2 + 2kj · ∇ and A2 = 2
∑3
j=1 |Aj |2. The

dynamic equations are derived using non-conserved, dis-
sipative dynamics. We chose the same set of parameters
as Hirvonen et al. [14] (Bl = 1, Bx = 0.98, t = −1/2,
v = 1/3, cA = 7.95eV , a0 = 2.46Å).

III. LIMITATIONS OF THE APFC MODEL

The amplitude expansion of the PFC model approxi-
mates the solution for the atomic density function ψ with
a sum of atomic density waves aligned with the first 3
vectors of the reciprocal lattice as described in eq. (2).
A complex amplitude Aj describes density variation in
direction corresponding to its wave vector. In case the
grain is rotated relative to the initially chosen set of base
vectors, the rotation is expressed through the beats in
the complex amplitudes A

′

j = A0
je
i(kj(ϑ)−kj)·x where A0

j

and kj(ϑ) are the complex amplitudes and base vectors
in a system, aligned with the rotated grain.

The real rotation of the grains is therefore determined
by two disconnected parts of the model, the beats in the
complex amplitudes which express the rotation of the
grain relative to the initially chosen base vectors, and the
rotation of the initially chosen set of base vectors. The
unphysical grain boundary in the APFC model appears
due to the model’s inability to connect both expressions
of grain rotation.

A grain with complex amplitudes (A1, A2, A3), rotated
by 60◦, can be represented by beats in the complex am-
plitudes corresponding to 60◦ rotation. As a 60◦ rota-
tion of the crystal lattice, in a system with 60◦ rota-
tional symmetry, corresponds to a re-assignment of com-
plex amplitudes to base vectors, it could also be rep-
resented by the amplitudes (A∗2, A

∗
3, A

∗
1) with no beats.

Since the APFC model can’t connect both representa-
tions for physically the same grain, an unphysical grain

FIG. 1. The figure presents (a) atomic density around a
wedge defect, (b)-(j) base vectors rotated to match the rota-
tion of the local lattice expressed through the beats in the
complex amplitudes (k), (l) free energy density and (m) ro-
tation of the base vectors. Because a wedge defect breaks
the rotational symmetry of the crystal, encircling it once will
shift the directions in which the basis vectors point by one
symmetry rotation of the crystal lattice. As the APFC model
can’t connect the rotation expressed through the beats with
the rotation of the base vectors, an unphysical grain boundary
occurs as seen in (l).

boundary [26] with characteristics of a 60◦ grain bound-
ary forms in the model where both representations meet.

This phenomena prevents the application of the APFC
model to the study of processes where grain rotation oc-
curs, or grain rotation can not be feasibly limited to less
than half of the crystal’s symmetry rotation. The limit
on grain rotations is enforced in most published studies
[5, 14, 15, 29], which either study only grain boundaries
at lower angles, or resort to using a different simulation
setup for grain boundaries with mismatch angles above
half of the crystal symmetry rotation.

To highlight this limitation of the APFC model and its
consequences, we calculated the complex amplitudes Aj
around the core of a wedge defect where the rotational
symmetry of the crystal lattice is broken. The chosen
wedge defect exhibits a 7-fold rotational symmetry in its
core as shown in the center of Fig. 1(a), whereas the nor-
mal lattice has 6-fold rotational symmetry. The initial
condition that yields this wedge dislocation is obtained
by ϑ(x, y) = 0 − (2π + atan2(y, x) mod 2π)/6 + π/6,

A
′

j = A0
je
i(kj(ϑ(x,y))−kj)·x. Due to the nature of the

wedge defect, encircling it one time will yield a 60◦ ro-
tation of the lattice vectors (one symmetry rotation of
the crystal lattice) and show an unphysical grain bound-
ary in the APFC model due to the mentioned limitations
of the model. Since pairs of wedge disclinations appear
on the grain boundaries in graphene frequently studied
with the APFC model [15], and pairs of complementary
disclinations are equivalent to dislocations [30], the ex-
ample also highlights a detail that occurs in many APFC
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simulations.
Figure 1(a) shows the atomic density function around a

wedge defect in the center of the image. Highlights (b)-(j)
show the local orientation of the base vectors at differ-
ent points around the wedge defect. The misalignment of
the local lattice with the initial choice of base vectors is
expressed through the beats in the complex amplitudes
presented in (k). Encircling the wedge defect from above
(b)-(f) rotates the atomic lattice by 30◦ clockwise. En-
circling the same defect core from below (b),(g)-(j) ro-
tates the atomic lattice by 30◦ counter-clockwise. This
means that the rotation expressed by the beats differs
by 60◦ on the line where both expressions of the rota-
tion meet (marked with (j) and (f) ), therefore creating
an unphysical grain boundary in the APFC model. Fig-
ure 1 (k) shows real part of the first complex amplitude
Re(A0). The frequency of the beats gradually increases
when encircling the defect core from either side, but as
the rotation of the lattice expressed through the beats is
different, in the area marked with (j) and (f) where both
rotations meet, the beats on both sides do not match,
and an unphysical grain boundary is formed, as also pre-
sented in a free energy plot in Fig. 1 (l). Figure 1 (m)
shows the rotation of the atomic lattice that is expressed
through the beats ranging from −30◦ to +30◦.

IV. DESCRIPTION OF IMPROVEMENTS TO
THE MODEL

Our model introduces a set of locally-rotated complex
amplitudes [6] Aϑj

Aj = Aϑj e
iδkj(ϑ)·x (6)

where ϑ is a local rotation field and kj(ϑ) = kj + δkj(ϑ)
are rotated basis vectors. The local rotation field ϑ is
incrementally derived from the complex amplitudes Aj
based on the observation that, when the rotation of the
basis vectors matches the rotation of the local grain, the
beats disappear and therefore the gradient of the locally
rotated amplitudes is zero:

∇Aϑj = (∇Aj)e−iδkj ·x +Aj(−iδkj)e−iδkj ·x = 0 (7)

We incrementally update the local rotation field using

δkj(ϑ) =
∇Aj
iAj

= kj(ϑ)− kj (8)

where we average the rotation angle derived from (8) over
all complex amplitudes. Due to the rotational covari-
ance of the operator Lj , the conversion between the basis
vectors rotated by a different amount can be separated
from the operator evaluation, and the adaptive mesh can
coarsen in all grains, regardless of the orientation. The
use of local rotation adds no additional error to the calcu-
lations (see Appendix A). To apply an operator Lj on a

locally rotated field X ∈ {Aϑj , LϑjAϑj }, the local rotation
is treated separately as in [6]

LϑjXϑ
j = e−iδkj·xLjXj (9)

In the current work, we present a new way to eliminate
the unphysical grain boundary between grains rotated
by a crystal’s symmetry rotation, using a local rotation
field in combination with an algorithm that uses the local
rotation field to correctly match the complex amplitudes
corresponding to base vectors pointing in most similar di-
rections in the entire simulation domain. The unphysical
grain boundary in the APFC model occurs because the
model can not connect the rotation of the base vectors for
the amplitudes with the rotation expressed through the
beats of the complex amplitudes. To solve this problem,
our algorithm correctly matches the complex amplitudes
based on the total rotation, expressed through both beats
and the rotation of base vectors.

Numerical implementation of the algorithm uses a
lookup table to match the correct complex amplitudes.
We calculate a local rotation field that tracks the rotation
expressed through the beats in the complex amplitudes
as in [6]. When operating with values from different com-
putational nodes in the same calculation, we correct the
values for the differences in the local rotation as in [6],
and if the difference in the local rotation exceeds half
of the crystal’s symmetry rotation, we match the ampli-
tudes that correspond to the most similar physical di-
rections. In effect this means that when the neighboring
computation nodes differ in rotation by 60◦, we use A∗2 of
the second node instead of A1 when calculating the val-
ues of operators in the first computation node. The ap-
proximation of the single-mode solution (2) is the sum of
planar waves directed at angles that are multiples of the
crystal’s symmetry rotation. Table I lists the wave vec-
tors, the angles they form with the first wave vector k1,
the complex amplitudes Aj matching the selected wave
vector, and the wave vectors we obtain with one crys-
tal’s symmetry rotation (±60◦). Our algorithm finds the
best matching complex amplitudes in neighboring com-
putational nodes by comparing the local rotation of both
nodes. If the local rotation ϑ differs by more than half
of the crystal’s symmetry rotation (|ϑL − ϑR| > 30◦),
the algorithm matches the complex amplitude A1 in one

TABLE I. A list of wave vectors, their rotation and cor-
responding amplitudes. The matching amplitudes when the
rotation is shifted by one crystal’s symmetry rotation in either
direction are shown in the table’s last two columns.

Direction Rotation Amp. Amp. (+60◦) Amp. (−60◦)
+k1 0 A1 A∗2 A∗3
−k2 60 A∗2 A3 A1

+k3 120 A3 A∗1 A∗2
−k1 180 A∗1 A2 A3

+k2 240 A2 A∗3 A∗1
−k3 300 A∗3 A1 A2
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FIG. 2. Wave vectors in two neighboring computational
nodes with different local rotations ((a) ϑ = 0◦, (b) ϑ = 55◦).
Our algorithm matches the complex amplitudes that corre-
spond to the wave vectors that point in the closest directions.
A2 in the left computational node (a) is therefore matched
with the complex amplitude A∗1 in the right computational
node (b), as the angle between the corresponding wave vec-
tors is only 5◦.

computational node with A∗2 or A∗3 in the other compu-
tational node, depending on the sign of the difference. A
full list of matching amplitudes is presented in Table I.
In Fig. 2, the wave vectors in two neighboring compu-
tational nodes with different local rotations are shown.
The algorithm used is the same as in [6], with the follow-
ing two additions. First, when an operator is evaluated
on a locally rotated field, the matching amplitudes from
neighboring nodes are used. In case the differences in lo-
cal rotations between nodes are greater than half of the
crystal’s symmetry rotation, the matching algorithm uses
Table I to find appropriate matching amplitudes. Second,
after the optimal local rotation is found in all regions
where |Aϑj | > Amin amp. for all j, the calculated local ro-
tation is copied from each computation node where it is
set to all its neighbors where the local rotation is still
unset. This process of propagating the local rotation is
repeated 10 times.

The first improvement eliminates the unphysical grain
boundary occurring between grains that differ in orienta-
tions by more than half of the crystal’s symmetry rota-
tion. The second improvement is required as the lattice
rotation is physically undefined in liquid regions, which
initially fill the whole computational domain, and is there
set to zero by default. Without the second improvement,
the incremental updates to the local rotation start from
zero and result in a continuous transition of local rota-
tion across grain boundaries, regardless of the misorien-
tation between grains, which prevents the first improve-
ment from finding the correct matching amplitudes on
the interface. Propagating the calculated local rotation
into regions where it is yet undefined provides good start-
ing points for the algorithm and enables convergence to
correct values even where the correct values change dis-
continuously at the grain boundary.

The presented improvements to the APFC model
change the calculations only in areas where the APFC

model gives incorrect results due to the unphysical grain
boundary problem described in chapter III. Correct
matching of the complex amplitudes introduced by the
presented algorithm limits the effective rotations of the
atomic lattice to one lattice symmetry rotation with cor-
rect periodicity, matching the physical description of the
crystal. The improvement therefore only removes exist-
ing errors in the model and has no effect on the calcula-
tions in the vast majority of the computational domain,
where the APFC model is known to work correctly. The
origin of the unphysical grain boundary problem might
also be seen as a problem with incorrect period of the pa-
rameter describing atomic lattice rotation. In the APFC
model the lattice rotation is taken as a parameter with
values in interval [0, 2π), and the unphysical grain bound-
ary occurs as the lattice rotation is physically really a
value on a much smaller interval [0, ϑsymmetry rotation),
with periodicity in both intervals. Complex amplitude
matching based on the real, physical rotation of the
atomic lattice introduced in the presented improvements
changes the effective lattice rotations to the interval and
periodicity that match the physical properties of the crys-
tal lattice.

V. RESULTS

Figure 3 shows a grain boundary at a 50.1◦ tilt an-
gle. Without amplitude matching, the result is a grain
boundary that would correspond to an effective tilt an-
gle of 50.1◦, which is impossible as the crystal’s symme-
try rotation of 60◦ limits the effective tilt angles to 30◦.
With the amplitude matching algorithm, the amplitudes
on both sides of the grain boundary that correspond to
wave vectors pointing in the most similar directions are
properly matched and the result is a grain boundary with
a similar structure to a 10◦ = 60◦ − 50◦ grain boundary,
as expected.

We calculated the grain boundary energies with our
improved algorithm and compared them with results
published by Hirvonen et al. [14]. Our improvements
result in the removal of the unphysical effects from im-
proper matching of complex amplitudes on different sides
of the grain boundary. In Fig. 4, we show the calculated
grain boundary energies in comparison to [14]. In our
calculations, we used two different ways of constructing a
grain boundary, like [14] we constructed a grain boundary
in armchair configuration using two grains that form a
vertically oriented grain boundary and used a horizontal
grain boundary for the zigzag configuration. The results
of calculations obtained without the amplitude-matching
algorithm agree well with previous results, and the small
differences can be explained by numerical errors intro-
duced by the use of the adaptive mesh refinement tech-
niques and differences in construction of the grain bound-
aries. Larger differences occur only at tilt angles outside
of the range in which a specific grain boundary construc-
tion is applicable (above 30◦ for AC configuration and
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Algorithm 1 Local rotation adjustment. Parameters p,
q, Amin. amp. and ϑmax. phase are heuristic.

for each computation node do
Find optimal rotation ϑopt:
if |Aϑ

j | > Amin amp. for all j then
In solidified regions: from gradient
for all j ∈ {1, 2, 3} do

δkj(ϑcurrent) = Re
(∇A

ϑcurrent
j

iA
ϑcurrent
j

)
ϑx,j = 1 + kj(ϑcurrent) · δkj

ϑy,j = (kj(ϑcurrent)× δkj) · êz

end for
ϑopt = ϑcurrent + atan2(

∑
j ϑy,j/3,

∑
j ϑx,j/3)

else
In liquid regions: drop towards zero
ϑopt = 0

end if
Smooth the changes
ϑnew = p× ϑcurrent + q × ϑopt

Prevent skipping beats
dϑ = max{all neighbours NN} |ϑNN − ϑnew| modulo 60◦

kϑ = dx dϑ/ϑmax. phase

if kϑ > 1 then
ϑnew = ϑcurrent + (ϑnew − ϑcurrent)/kϑ

end if
ϑcurrent = ϑnew

end for
for 10× propagate local rotation into liquid regions do

for each computation node do
if |Aϑ

j | > Amin. amp. then
mark node as “rotation is set”

else if this node has a marked NN then
ϑcurrent = average ϑ over all marked NN
mark node as “rotation is set”

end if
end for

end for

below 30◦ for ZZ configuration) and in both cases us-
ing a local rotation scheme in combination with AMR
techniques reduces the error. Results obtained with our
amplitude-matching algorithm show a continuous transi-
tion between the results obtained with APFC(AC) and
APFC(ZZ) configurations at an appropriate angle, con-
firming the successful removal of the unphysical effects
on the grain boundaries.

The grain boundaries were constructed by seeding the
simulation domain with a crystal phase upon two oppo-
site rotations, as seen in Fig. 5. The rotation was chosen
in such a way that the atomic density on the line between
the domains with different orientations is exactly period-
ical. Before the start of the simulations, we melted the
crystal phase in a small area around the grain boundary
line. To calculate the grain boundary energy, we aver-
aged the free energy density in the marked area in Fig. 5.
The area matches the period of the initial atomic density
in y direction and extends into pure, undeformed crystal
in x direction. We used sufficiently large simulation do-

FIG. 3. Free energy on the grain boundary in armchair con-
figuration at a mismatch angle of 50.1◦. The top row: (a)
shows an unphysical grain boundary that is formed between
grains at mismatch angles larger than half of the crystal’s
symmetry rotation [26]. Middle row: (b) shows the same
grain boundary as formed in simulations with our improved
algorithm that correctly matches complex amplitudes at dif-
ferent rotations, and therefore the unphysical effects do not
occur. Bottom row: (c) shows the local rotation as used in
our improved algorithm.

mains (L = 512π/2) to ensure that the center-most area
remains periodic in the direction along the grain bound-
ary and the crystal is undeformed at both ends of the
marked area. The adaptive mesh refined by 4 levels to
∆x = π/2 × 24 ≈ 25.13 in the bulk lattice, indicating
that the bulk lattice was undeformed in the simulations.
Due to these properties of the area over which we aver-
aged the free energy density, the grain boundary energy
can be calculated as

γ = ∆F/∆y (10)

where ∆F = F�−Fcrystal,� is the increase in free energy
in the marked area and ∆y is the grain boundary length
(in the horizontal grain boundary configuration the axes
are switched appropriately).

The effects of our improvements in an example of a
simulation with many grains are presented in Fig. 6.
12 seeds with rotations in a full rotation range (θ ∈
[−30◦,+30◦)) were grown in undercooled melt using the
algorithm presented in this article and compared to our
previous work [6]. We can see that the improvements re-
move unphysically high grain boundary energies on the
grain boundaries where the impinging grains are at a tilt
angle above 30◦. Presuming a completely uniform distri-
bution of grain orientations, this results in the removal
of the unphysical effects on half of the grain boundaries.
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FIG. 4. The grain boundary energy as a function of tilt angle. Values for models APFC(AC) and APFC(ZZ) were published
by Hirvonen et al. [14] and are in good agreement with our model. Our model without amplitude matching in armchair (AC)
and zigzag (ZZ) configurations matches previously published results. Amplitude matching in either configuration successfully
removes the unphysical increase in grain boundary energy observed when the tilt angle is more than half of the crystal’s
symmetry rotation away from a configuration in which complex amplitudes from both impinging grains are completely aligned.

FIG. 5. Grain boundary construction and calculation of free
energy. In order to calculate the free energy of a symmetric
tilt grain boundary, we simulate two impinging grains, each
rotated by an angle at which the microstructure in the mid-
dle of the grains repeats periodically, presuming an infinite
simulation domain. We calculate the free energy per grain
boundary length from the average free energy in the marked
regions.

VI. CONCLUSIONS

The presented work introduces a new improvement
to the APFC model that removes the unphysical grain
boundary, which occurs in the model between grains, ro-
tated by a crystal’s symmetry rotation. Presented im-
provement enables APFC simulations of industrially im-
portant processes where grains rotate or grain rotation
can not be feasibly limited.

Rotation of grains expressed through the beats in the
complex amplitudes is connected with the rotation of the
base vectors through an auxiliary local rotation field [6]
and a lookup table connecting local rotation to rotation
of base vectors for the amplitudes. Grain boundary ener-
gies calculated with the improved algorithm match pre-
viously published results in correct ranges of values. The
improved algorithm enables calculations of grain bound-
ary energies in the entire range of misfits using a sin-
gle simulation setup where previous approaches required
separate simulation setups for armchair and zigzag grain
boundary configurations.
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FIG. 6. Grain boundary energies in an example sim-
ulation. 12 seeds with rotations in a full rotation range
(θ ∈ (−30◦,+30◦)) were placed in undercooled melt. The
images in the top row show free energy density in the full
simulation domain, as calculated: (a) with the algorithm pub-
lished in [6], and (b) the algorithm presented here. We can
see that our improved algorithm removes the unphysical ef-
fects on grain boundaries. The images in the bottom row
show: (c) the local rotation field; and (d) the reconstructed
microstructure.
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Appendix A: Equivalence of APFC calculations in
rotated and non-rotated systems

Rotational covariance of the free energy in the APFC
model requires that the dynamic equations of the model
and free energy density do not depend on the rotation of
the initially chosen base vectors.

The conversion of complex amplitudes Aj between sys-
tems with differently rotated base vectors kj is a multipli-
cation with rotation conversion factor e−iδkj ·x as written

in equation (6) [5]. The following appendix provides a
proof that the same conversion also holds for all rotation-
ally covariant fields. As a consequence, the calculations
performed in systems with different rotations of base vec-
tors can be combined with no additional error. Free en-
ergy density, elastic energy and all measurable fields do
not change when using local rotation in the calculations.

1. Definitions

�ϑ = {∇2 + 2ikj(ϑ) · ∇} (A1)

� = �ϑ=0 (A2)

kj(ϑ) = kj + δkj (A3)

kj(ϑ) is kj rotated by ϑ, for all j ∈ {1, 2, 3}, using cyclical
indexes in text.
X is a field expressed in a system with non-rotated base
vectors kj , andXϑ the corresponding field in system with
rotated base vectors kj(ϑ).[
∂Aj

∂t

]
is the time derivative of the complex amplitude

Aj and
[
∂Aj

∂t

]ϑ
is the corresponding time derivative ex-

pressed in rotated system.
In general: a symbol without superscriptϑ marks the
same field in non-rotated system.

2. Proof

Lemma 1.1. From

Xϑ(x) = e−iδkj ·xX(x) (A4)

it follows

�ϑXϑ = e−iδkj·x�X (A5)

The conversion between fields, derived by applying the
operator �ϑ to the original field Xϑ (�ϑXϑ and �X) is
multiplication with the same conversion factor as when
converting between the original rotated and non-rotated
fields Xϑ and X.

Proof.

∇Xϑ =

= (∇X)e−iδkj·x +X(−iδkj)e−iδkj·x (A6)

∇2Xϑ =

= (∇2X)e−iδkj·x + 2(∇X)(−iδkj)e−iδkj·x

+X(−(δkj)
2)e−iδkj·x (A7)
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(e+iδkj·x)�ϑXϑ = (e+iδkj·x){∇2Xϑ + 2ikj(ϑ) · ∇Xϑ}
(A8)

= (∇2X) + 2(∇X)(−iδkj) +X(−(δkj)
2)

(A9)

+ 2ikj(ϑ) · ∇X + 2ikj(ϑ) · (−iδkj)X
(A10)

= (∇2X) + 2ikj(∇X) (A11)

−(((((
(

2ikj(ϑ)(∇X) (A12)

+X(−k2
j − kj(ϑ)2 + 2kj · kj(ϑ))

(A13)

+(((
((((2ikj(ϑ) · (∇X) (A14)

+ 2ikj(ϑ) · (−iδkj)X (A15)

= �X (A16)

+X{−k2
j − kj(ϑ)2 +

XXXXX2kj · kj(ϑ)

(A17)

− 2i2kj(ϑ)2 +
XXXXXX2i2kj(ϑ) · kj } (A18)

= �X +X{−��k
2
j +��

��
kj(ϑ)2} (A19)

= �X (A20)

where kj(ϑ)2 = k2
j as rotation preserves distance.

Lemma 1.2. From

Xϑ(x) = e−iδkj ·xX(x) (A21)

it follows

(�ϑ)nXϑ = e−iδkj·x(�)nX (A22)

for all positive integers n, n ∈ Z+.
The conversion between fields, derived by applying the

operator �ϑ to the original field Xϑ n times is multiplica-
tion with the same conversion factor as when converting
between the original rotated and non-rotated fields X and
Xϑ.

Proof. Proof is by induction. Induction base (n = 1)
is proven in Lemma 1.1. To prove the induction step
(n→ n+ 1), we observe that (�ϑ)nXϑ = Y ϑ is a field in
rotated system that corresponds to the field (�)nX = Y
in non-rotated system for which equation (A4) holds by
induction presumption. Then

(�ϑ)(n+1)Xϑ = �ϑ(�ϑ)nXϑ = (A23)

�ϑY ϑ = e−iδkj·x�Y = (A24)

e−iδkj·x��nX = e−iδkj·x�(n+1)X (A25)

Lemma 1.3. From

Xϑ(x) = e−iδkj ·xX(x) (A26)

it follows

Pn(�ϑ)Xϑ = e−iδkj·xPn(�)X (A27)

for all positive integers n, n ∈ Z+, where

Pn(�) =

n∑
i=0

ai�
i (A28)

Pn(�ϑ) =

n∑
i=0

ai(�
ϑ)i (A29)

is a polynomial function of the operators � and �ϑ of
degree n.

Proof.

Pn(�ϑ)Xϑ =

n∑
i=0

ai(�
ϑ)iXϑ (A30)

=

n∑
i=0

aie
−iδkj·x(�)iX = e−iδkj·xPn(�)X

(A31)

where we used Lemma 1.2 for all powers of the operators.

Theorem 1.4. The calculation results obtained in lo-
cally rotated system and non-rotated systems are equiva-
lent, meaning that the rotation conversion factor for the
complex amplitudes Aj, e

−iδkj·x, converts also the results
between both systems.

Proof. Since the conversion between rotated and non-
rotated complex amplitudes is Aϑ(x) = e−iδkj ·xA(x) it
is equivalent to prove that the dynamic equations for the
APFC model give equivalent results in both, rotated and
non-rotated systems, or[

∂Aj
∂t

]ϑ
=
∂Aj
∂t

e−iδkj·x (A32)

for all j ∈ {1, 2, 3}.
We use the following properties of the APFC model:

|Aj |2 = AjA
∗
j (A33)

L̃ϑj = (1−�ϑ)(−r − 3ψ
2 − {�ϑ}2)

(A34)

Lϑj = �ϑ (A35)∏
k:k 6=j

A∗k = A∗j+1A
∗
j−1 (A36)

k1 + k2 + k3 = 0 (A37)

k1(ϑ) + k2(ϑ) + k3(ϑ) = 0 (A38)

e+iδkj+1·xe+iδkj−1·x = e+i{kj+1(ϑ)+kj−1(ϑ)−kj+1−kj−1}·x

= e+i{−kj(ϑ)+kj}·x

= e−iδkj ·x (A39)
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Aϑ2 = 2

3∑
j=1

|Aϑj |2

= 2

3∑
j=1

AϑjA
ϑ∗
j

= 2

3∑
j=1

��
��

e−iδkj·xAj��
��

e+iδkj·xA∗j

= 2

3∑
j=1

|Aj |2 = A2 (A40)

∏
k 6=j

Aϑ∗k = e+iδkj+1·xAj+1e
+iδkj−1·xAj−1

= e−iδkj·xAj+1Aj−1 (A41)

It follows[
∂Aj
∂t

]ϑ
= (A42)

= −[∆B +BxLϑ2j + 3v(Aϑ2 − |Aϑj |2)]Aϑj

+ 2t
∏
k 6=j

Aϑ∗k (A43)

= −e−iδkj·x∆BAj

− e−iδkj·xBxL2
jAj

− e−iδkj·xA2Aj

− e−iδkj·x���
�

e−iδkj·xAj��
��

e+iδkj·xA∗jAj

+ e−iδkj·x2t
∏
k 6=j

A∗k (A44)

= e−iδkj·x
{
−[∆B +BxL2

j + 3v(A2 − |Aj |2)]Aj

+ 2t
∏
k 6=j

A∗k

}
(A45)

= e−iδkj·x ∂Aj
∂t

(A46)

where we used Lemma 1.3 for Lϑ2j Aϑj .
Or for the APFC model published in [5, 6]

∂Aj
∂t

= L̃jAj − 3Aj |Aj |2 − 6Aj
∑
k:k 6=j

|Ak|2 − 6ψ
∏
k:k 6=j

A∗k

(A47)
we obtain the same equivalence:[

∂Aj
∂t

]ϑ
= (A48)

= L̃ϑjAϑj
− 3Aϑj |Aϑj |2 − 6Aϑj

∑
k:k 6=j

|Aϑk |2

− 6ψ
∏
k:k 6=j

Aϑ∗k (A49)

= e−iδkj·xL̃jAj
− e−iδkj·x3AjAjA

∗
j�
���e−iδkj·x���

�
e+iδkj·x

− e−iδkj·x6Aj
∑
k:k 6=j

AkA
∗
k��

��e−iδkk·x���
�

e+iδkk·x

− 6ψA∗j+1e
+iδkj+1·xA∗j−1e

+iδkj−1·x (A50)

= e−iδkj·x
{
L̃jAj

− 3Aj |Aj |2 − 6Aj
∑
k:k 6=j

|Ak|2

− 6ψ
∏
k:k 6=j

A∗k

}
(A51)

= e−iδkj·x ∂Aj
∂t

(A52)

where we used Lemma 1.3 for L̃ϑjAϑj
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